CNN-Improved Superpixel-to-Pixel Fuzzy Graph Convolution Network for PolSAR Image Classification

模式识别(心理学) 人工智能 计算机科学 像素 特征(语言学) 模糊逻辑 图像分割 特征提取 分割 上下文图像分类 图形 计算机视觉 图像(数学) 哲学 语言学 理论计算机科学
作者
Junfei Shi,Tiansheng He,Shanshan Ji,Mengmeng Nie,Haiyan Jin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:3
标识
DOI:10.1109/tgrs.2023.3327109
摘要

Superpixel-based graph convolutional network (SGCN) has shown the advantages of less computational time and global modeling ability for polarimetric synthetic aperture radar (PolSAR) image classification. However, the effectiveness is heavily dependent on the superpixel segmentation result. Existing superpixel segmentation methods usually produce edge errors due to speckle and scattering confusion, which directly results in the mistakes of the final classification. To address this issue, a novel hybrid weighted fuzzy SGCN method(HF-SGCN) is proposed to correct the edge pixels by defining a fuzzy projection matrix (FPM). The FPM can transform features from superpixel to pixel, by which features of edge pixels can be calculated from all the neighboring superpixels with a certain probability, so as to correct edges to the most similar region. In addition, a hybrid weighted adjacent matrix is formulated by incorporating both the revised Wishart and multi-feature distances, which can enhance the discriminating features effectively. The proposed HF-SGCN method is capable of capturing the global contextual information and rectifying edges, while disregarding the local individual features for each pixel. To combine global and local features, we further propose the HF-SGCN-CNN method, which integrates the superpixel-wise HF-SGCN network and the pixel-wise 3D-CNN network into a unified framework. Thus, we can fuse the features extracted from two subnetworks, producing complementary global and local features that significantly improve classification accuracy. Experiments are conducted on four publicly real PolSAR datasets with different sensors and bands. Experimental results demonstrate the effectiveness of the proposed methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助聪明的龙猫采纳,获得10
1秒前
1秒前
青青完成签到 ,获得积分10
4秒前
白鸽鸽发布了新的文献求助10
5秒前
Singularity应助哦_哦采纳,获得10
5秒前
7秒前
仁爱听露发布了新的文献求助10
7秒前
7秒前
小肆完成签到 ,获得积分10
8秒前
nwds完成签到,获得积分10
9秒前
SUN完成签到 ,获得积分10
10秒前
三年不洗澡完成签到 ,获得积分10
10秒前
贤君完成签到,获得积分10
10秒前
桐桐应助霸气的小成成采纳,获得10
11秒前
11秒前
懋平发布了新的文献求助10
12秒前
12秒前
planA完成签到,获得积分10
14秒前
佟韩发布了新的文献求助10
17秒前
yuki完成签到 ,获得积分10
18秒前
劲秉应助落寞银耳汤采纳,获得10
19秒前
火羽白然完成签到 ,获得积分10
20秒前
20秒前
光亮青柏完成签到 ,获得积分10
20秒前
22秒前
22秒前
sam完成签到,获得积分10
23秒前
眼睛大天思完成签到,获得积分10
23秒前
一直会飞的猪完成签到 ,获得积分10
24秒前
粗心的chen发布了新的文献求助10
25秒前
fei发布了新的文献求助10
27秒前
30秒前
科研通AI5应助白鸽鸽采纳,获得10
32秒前
33秒前
小雨堂完成签到 ,获得积分10
34秒前
blenx发布了新的文献求助10
34秒前
zhaogl完成签到 ,获得积分10
36秒前
37秒前
所所应助qiu采纳,获得10
42秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673458
求助须知:如何正确求助?哪些是违规求助? 3229111
关于积分的说明 9784159
捐赠科研通 2939678
什么是DOI,文献DOI怎么找? 1611198
邀请新用户注册赠送积分活动 760859
科研通“疑难数据库(出版商)”最低求助积分说明 736290