Electric eel foraging optimization: A new bio-inspired optimizer for engineering applications

觅食 测试套件 计算机科学 元启发式 进化算法 布谷鸟搜索 进化计算 群体行为 航程(航空) 测试用例 粒子群优化 一套 数学优化 计算 人工智能 机器学习 模拟 算法 生态学 工程类 数学 历史 回归分析 考古 生物 航空航天工程
作者
Weiguo Zhao,Liying Wang,Zhenxing Zhang,Honggang Fan,Jiajie Zhang,Seyedali Mirjalili,Nima Khodadadi,Qingjiao Cao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122200-122200 被引量:132
标识
DOI:10.1016/j.eswa.2023.122200
摘要

An original swarm-based, bio-inspired metaheuristic algorithm, named electric eel foraging optimization (EEFO) is developed and tested in this work. EEFO draws inspiration from the intelligent group foraging behaviors exhibited by electric eels in nature. The algorithm mathematically models four key foraging behaviors: interaction, resting, hunting, and migration, to provide both exploration and exploitation during the optimization process. In addition, an energy factor is developed to manage the transition from global search to local search and the balance between exploration and exploitation in the search space. EEFO reveals various foraging patterns based on the foraging characteristics of electric eels. In this study, such dynamic patterns and behaviors are mathematically imitated to design an effective global optimizer. The effectiveness of EEFO is verified through a comparison with 12 other algorithms using the 23 test functions, Congress on Evolutionary Computation 2011 (CEC2011) test suite, and Congress on Evolutionary Computation 2017 (CEC2017) test suite. The experimental results reveal that the EEFO algorithm outperforms the other algorithms for 87% of the 23 test functions and 59% of the CEC2011 test suite, as well as for 66%, 52% and 45% of the CEC2017 test suite with 10, 30, and 50 dimensions, respectively. The applicability of EEFO is comprehensively tested with 10 engineering problems and the application of hydropower station sluice opening control under accident tripping conditions. The results demonstrate the superiority and promising prospects of EEFO when solving a wide range of challenging real-world problems. Overall, the proposed algorithm showcases exceptional performance in terms of exploitation, exploration, the ability to balance exploitation and exploration, and avoiding local optima. EEFO exhibits remarkable competitiveness, particularly in optimization problems that involve unimodal characteristics and numerous constraints and variables. The source code of EEFO is publicly available at https://ww2.mathworks.cn/matlabcentral/fileexchange/153461-electric-eel-foraging-optimization-eefo.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神勇契完成签到,获得积分10
刚刚
1秒前
2秒前
4秒前
6秒前
6秒前
梦_筱彩完成签到 ,获得积分10
6秒前
Revision发布了新的文献求助10
7秒前
9秒前
CAOHOU应助Intro采纳,获得10
11秒前
11秒前
12秒前
Jasper应助yuan采纳,获得10
13秒前
13秒前
15秒前
Revision完成签到,获得积分10
16秒前
adbr完成签到,获得积分10
16秒前
17秒前
杨振发布了新的文献求助10
18秒前
FashionBoy应助风趣的惜天采纳,获得10
18秒前
常常嘻嘻发布了新的文献求助10
18秒前
刘十一发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
21秒前
一杯沧海完成签到 ,获得积分10
22秒前
22秒前
qizhang发布了新的文献求助10
23秒前
24秒前
qxxxxx应助ZHY采纳,获得30
24秒前
z_发布了新的文献求助20
25秒前
闰土完成签到 ,获得积分10
25秒前
书羽完成签到,获得积分10
26秒前
26秒前
doomedQL完成签到,获得积分10
27秒前
27秒前
28秒前
星辰大海应助虚心的西牛采纳,获得10
28秒前
宋呵呵完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
28秒前
wanci应助xci采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734970
求助须知:如何正确求助?哪些是违规求助? 5357733
关于积分的说明 15328255
捐赠科研通 4879430
什么是DOI,文献DOI怎么找? 2621934
邀请新用户注册赠送积分活动 1571143
关于科研通互助平台的介绍 1527931