Electric eel foraging optimization: A new bio-inspired optimizer for engineering applications

觅食 测试套件 计算机科学 元启发式 进化算法 布谷鸟搜索 进化计算 群体行为 航程(航空) 测试用例 粒子群优化 一套 数学优化 计算 人工智能 机器学习 模拟 算法 生态学 工程类 数学 航空航天工程 回归分析 历史 生物 考古
作者
Weiguo Zhao,Liying Wang,Zhenxing Zhang,Honggang Fan,Jiajie Zhang,Seyedali Mirjalili,Nima Khodadadi,Qingjiao Cao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122200-122200 被引量:78
标识
DOI:10.1016/j.eswa.2023.122200
摘要

An original swarm-based, bio-inspired metaheuristic algorithm, named electric eel foraging optimization (EEFO) is developed and tested in this work. EEFO draws inspiration from the intelligent group foraging behaviors exhibited by electric eels in nature. The algorithm mathematically models four key foraging behaviors: interaction, resting, hunting, and migration, to provide both exploration and exploitation during the optimization process. In addition, an energy factor is developed to manage the transition from global search to local search and the balance between exploration and exploitation in the search space. EEFO reveals various foraging patterns based on the foraging characteristics of electric eels. In this study, such dynamic patterns and behaviors are mathematically imitated to design an effective global optimizer. The effectiveness of EEFO is verified through a comparison with 12 other algorithms using the 23 test functions, Congress on Evolutionary Computation 2011 (CEC2011) test suite, and Congress on Evolutionary Computation 2017 (CEC2017) test suite. The experimental results reveal that the EEFO algorithm outperforms the other algorithms for 87% of the 23 test functions and 59% of the CEC2011 test suite, as well as for 66%, 52% and 45% of the CEC2017 test suite with 10, 30, and 50 dimensions, respectively. The applicability of EEFO is comprehensively tested with 10 engineering problems and the application of hydropower station sluice opening control under accident tripping conditions. The results demonstrate the superiority and promising prospects of EEFO when solving a wide range of challenging real-world problems. Overall, the proposed algorithm showcases exceptional performance in terms of exploitation, exploration, the ability to balance exploitation and exploration, and avoiding local optima. EEFO exhibits remarkable competitiveness, particularly in optimization problems that involve unimodal characteristics and numerous constraints and variables. The source code of EEFO is publicly available at https://ww2.mathworks.cn/matlabcentral/fileexchange/153461-electric-eel-foraging-optimization-eefo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
疏狂完成签到,获得积分10
1秒前
幸运星完成签到,获得积分10
2秒前
Vv发布了新的文献求助30
2秒前
木子发布了新的文献求助10
3秒前
可乐土豆饼完成签到,获得积分10
4秒前
小马甲应助俭朴的猫咪采纳,获得10
4秒前
4秒前
4秒前
粗暴的万仇完成签到,获得积分20
5秒前
zhenjl完成签到,获得积分10
5秒前
111发布了新的文献求助10
6秒前
6秒前
HCLonely应助辛勤的青易采纳,获得10
7秒前
7秒前
黒面包完成签到,获得积分10
7秒前
7秒前
活力的秋烟完成签到,获得积分10
7秒前
Jenny完成签到,获得积分10
7秒前
李健的小迷弟应助zhangkx23采纳,获得10
8秒前
淡定的太清完成签到,获得积分10
8秒前
田様应助蓝桉采纳,获得10
8秒前
draven007发布了新的文献求助10
8秒前
zhenjl发布了新的文献求助10
9秒前
Captain发布了新的文献求助10
10秒前
zgq发布了新的文献求助10
11秒前
Jasper应助666采纳,获得10
11秒前
汤万天应助123采纳,获得10
12秒前
赘婿应助勤劳的白开水采纳,获得10
12秒前
13秒前
小乌龟发布了新的文献求助10
13秒前
13秒前
Jasper应助111采纳,获得10
14秒前
yvonnecao完成签到,获得积分20
15秒前
15秒前
16秒前
16秒前
云0727发布了新的文献求助10
17秒前
张远幸完成签到 ,获得积分10
17秒前
充电宝应助hyn采纳,获得10
18秒前
CodeCraft应助李东洋采纳,获得10
18秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218586
求助须知:如何正确求助?哪些是违规求助? 2867716
关于积分的说明 8157958
捐赠科研通 2534732
什么是DOI,文献DOI怎么找? 1367178
科研通“疑难数据库(出版商)”最低求助积分说明 644960
邀请新用户注册赠送积分活动 618144