Electric eel foraging optimization: A new bio-inspired optimizer for engineering applications

觅食 测试套件 计算机科学 元启发式 进化算法 布谷鸟搜索 进化计算 群体行为 航程(航空) 测试用例 粒子群优化 一套 数学优化 计算 人工智能 机器学习 模拟 算法 生态学 工程类 数学 航空航天工程 回归分析 历史 生物 考古
作者
Weiguo Zhao,Liying Wang,Zhenxing Zhang,Honggang Fan,Jiajie Zhang,Seyedali Mirjalili,Nima Khodadadi,Qingjiao Cao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122200-122200 被引量:132
标识
DOI:10.1016/j.eswa.2023.122200
摘要

An original swarm-based, bio-inspired metaheuristic algorithm, named electric eel foraging optimization (EEFO) is developed and tested in this work. EEFO draws inspiration from the intelligent group foraging behaviors exhibited by electric eels in nature. The algorithm mathematically models four key foraging behaviors: interaction, resting, hunting, and migration, to provide both exploration and exploitation during the optimization process. In addition, an energy factor is developed to manage the transition from global search to local search and the balance between exploration and exploitation in the search space. EEFO reveals various foraging patterns based on the foraging characteristics of electric eels. In this study, such dynamic patterns and behaviors are mathematically imitated to design an effective global optimizer. The effectiveness of EEFO is verified through a comparison with 12 other algorithms using the 23 test functions, Congress on Evolutionary Computation 2011 (CEC2011) test suite, and Congress on Evolutionary Computation 2017 (CEC2017) test suite. The experimental results reveal that the EEFO algorithm outperforms the other algorithms for 87% of the 23 test functions and 59% of the CEC2011 test suite, as well as for 66%, 52% and 45% of the CEC2017 test suite with 10, 30, and 50 dimensions, respectively. The applicability of EEFO is comprehensively tested with 10 engineering problems and the application of hydropower station sluice opening control under accident tripping conditions. The results demonstrate the superiority and promising prospects of EEFO when solving a wide range of challenging real-world problems. Overall, the proposed algorithm showcases exceptional performance in terms of exploitation, exploration, the ability to balance exploitation and exploration, and avoiding local optima. EEFO exhibits remarkable competitiveness, particularly in optimization problems that involve unimodal characteristics and numerous constraints and variables. The source code of EEFO is publicly available at https://ww2.mathworks.cn/matlabcentral/fileexchange/153461-electric-eel-foraging-optimization-eefo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
马凯东发布了新的文献求助10
3秒前
黑眼圈发布了新的文献求助10
3秒前
4秒前
共享精神应助nemo采纳,获得10
4秒前
4秒前
酷波er应助CCC采纳,获得10
5秒前
JamesPei应助福征采纳,获得10
5秒前
7秒前
万能图书馆应助尹恩惠采纳,获得10
8秒前
sume24发布了新的文献求助10
8秒前
Sal完成签到,获得积分10
8秒前
小M发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
11秒前
科目三应助坦率的万言采纳,获得10
11秒前
妮露的修狗完成签到,获得积分10
12秒前
13秒前
噼里啪啦完成签到 ,获得积分10
13秒前
书双完成签到,获得积分10
14秒前
takumi关注了科研通微信公众号
14秒前
daisies应助lihailong采纳,获得10
14秒前
15秒前
sfsdg发布了新的文献求助10
15秒前
16秒前
YQQ完成签到,获得积分10
16秒前
labbiqq发布了新的文献求助10
16秒前
天天快乐应助sdgfv采纳,获得10
16秒前
小M完成签到,获得积分10
17秒前
满意的烨磊完成签到,获得积分10
18秒前
21秒前
书双发布了新的文献求助20
21秒前
翻羽发布了新的文献求助10
22秒前
22秒前
23秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959455
求助须知:如何正确求助?哪些是违规求助? 3505634
关于积分的说明 11125092
捐赠科研通 3237449
什么是DOI,文献DOI怎么找? 1789148
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802858