A Hybrid Method for Vehicle–Track Coupling Dynamics by Analytical and Finite Element Combination Technique

编组 火车 磁道(磁盘驱动器) 有限元法 联轴节(管道) 振动 转向架 偏转(物理) 过程(计算) 计算机科学 工程类 结构工程 控制理论(社会学) 机械工程 物理 地图学 光学 控制(管理) 人工智能 量子力学 程序设计语言 地理 操作系统
作者
Tao Xin,Sen Wang,Pengsong Wang,Yi Yang,Congqi Dai
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
标识
DOI:10.1142/s0219455424501050
摘要

Globally, rail transit is developing toward higher speeds, larger axle weights, and greater environmental friendliness. The more and more complex wheel–rail interaction will result in the dynamic responses of vehicles, tracks and other structures needing more in-depth theoretical research. However, most existing models for dynamic simulations of the vehicle–track coupling system need to extend the model on both sides of the concerned region to eliminate the boundary effect. To a certain extent, this kind of process method increases the computational effort. To overcome this disadvantage, a hybrid model combined with the analytical method and finite element method was proposed. The moving support system (including transition nodes) was specially established referring to the analytical solution of rail deflection based on the Winkler elastic foundation beam theory to realize the combination of the two methods. Two examples were presented to verify the stability and accuracy of the proposed model. The comparison results show that simulation results of vertical wheel–rail forces and track vibrations are almost consistent with the existing model. Furthermore, the calculation efficiency was discussed and certificated under different long-marshalling trains, with an obvious speedup factor that could be more than 2.5 for 16-marshalling train. The proposed model has a wide application prospect in the vehicle–track coupling analysis of long-marshalling trains, especially for heavy haul railways with hundreds of vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
幸福发布了新的文献求助10
1秒前
阳光盼山发布了新的文献求助10
1秒前
胖达发布了新的文献求助10
3秒前
qwe发布了新的文献求助10
4秒前
顾矜应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
6秒前
123发布了新的文献求助20
7秒前
羊Q关注了科研通微信公众号
8秒前
充电宝应助胖达采纳,获得10
8秒前
tsehmu1完成签到 ,获得积分10
9秒前
9秒前
命运完成签到,获得积分10
10秒前
10秒前
10秒前
garmenchan完成签到,获得积分10
12秒前
lllllll完成签到,获得积分10
12秒前
13秒前
14秒前
今后应助王彬采纳,获得10
14秒前
千寻完成签到,获得积分10
14秒前
CipherSage应助tkdzjr12345采纳,获得10
15秒前
16秒前
xxx发布了新的文献求助10
16秒前
大胆的忆寒完成签到 ,获得积分10
16秒前
16秒前
星辰大海应助Y2024采纳,获得10
16秒前
ju龙哥发布了新的文献求助10
17秒前
Jiayana发布了新的文献求助10
17秒前
哭泣夜山完成签到,获得积分10
18秒前
mimoma发布了新的文献求助10
19秒前
lalala发布了新的文献求助10
20秒前
20秒前
月兮2013发布了新的文献求助10
20秒前
21秒前
Ryan完成签到,获得积分10
21秒前
鹿lu发布了新的文献求助10
22秒前
22秒前
24秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387666
求助须知:如何正确求助?哪些是违规求助? 3000256
关于积分的说明 8790493
捐赠科研通 2686215
什么是DOI,文献DOI怎么找? 1471580
科研通“疑难数据库(出版商)”最低求助积分说明 680386
邀请新用户注册赠送积分活动 673117