清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Large language models are few-shot clinical information extractors

计算机科学 杠杆(统计) 关系抽取 人工智能 自然语言处理 标杆管理 信息抽取 注释 鉴定(生物学) 领域(数学分析) 集合(抽象数据类型) 机器学习 情报检索 数学分析 植物 数学 营销 业务 生物 程序设计语言
作者
Monica Agrawal,Stefan Hegselmann,Hunter Lang,Yoon Kim,David Sontag
标识
DOI:10.18653/v1/2022.emnlp-main.130
摘要

A long-running goal of the clinical NLP community is the extraction of important variables trapped in clinical notes. However, roadblocks have included dataset shift from the general domain and a lack of public clinical corpora and annotations. In this work, we show that large language models, such as InstructGPT (Ouyang et al., 2022), perform well at zero- and few-shot information extraction from clinical text despite not being trained specifically for the clinical domain. Whereas text classification and generation performance have already been studied extensively in such models, here we additionally demonstrate how to leverage them to tackle a diverse set of NLP tasks which require more structured outputs, including span identification, token-level sequence classification, and relation extraction. Further, due to the dearth of available data to evaluate these systems, we introduce new datasets for benchmarking few-shot clinical information extraction based on a manual re-annotation of the CASI dataset (Moon et al., 2014) for new tasks. On the clinical extraction tasks we studied, the GPT-3 systems significantly outperform existing zero- and few-shot baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
倩倩14发布了新的文献求助20
8秒前
外向的芒果完成签到 ,获得积分10
13秒前
su完成签到 ,获得积分0
19秒前
shuoliu完成签到 ,获得积分10
22秒前
朱鑫汗发布了新的文献求助10
23秒前
genau000完成签到 ,获得积分10
24秒前
TOUHOUU完成签到 ,获得积分10
25秒前
自然代亦完成签到 ,获得积分10
29秒前
研友_VZG7GZ应助ceeray23采纳,获得20
32秒前
简啦啦完成签到 ,获得积分10
36秒前
45秒前
聪明的二休完成签到,获得积分10
45秒前
坚定蘑菇完成签到 ,获得积分10
48秒前
纳米果发布了新的文献求助10
51秒前
ding应助纳米果采纳,获得10
55秒前
xiaofeixia完成签到 ,获得积分10
58秒前
123完成签到 ,获得积分10
59秒前
Stella应助ceeray23采纳,获得20
1分钟前
haralee完成签到 ,获得积分10
1分钟前
lx完成签到,获得积分10
1分钟前
土拨鼠完成签到 ,获得积分0
1分钟前
甜乎贝贝完成签到 ,获得积分10
1分钟前
Ray完成签到 ,获得积分10
1分钟前
科研通AI2S应助倩倩14采纳,获得10
1分钟前
搜集达人应助xxsukixx采纳,获得10
1分钟前
gogogo完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
xxsukixx发布了新的文献求助10
1分钟前
勤劳的颤完成签到 ,获得积分10
1分钟前
科研通AI2S应助ceeray23采纳,获得20
2分钟前
徐团伟完成签到 ,获得积分10
2分钟前
apt完成签到 ,获得积分10
2分钟前
keke发布了新的文献求助10
2分钟前
mark完成签到,获得积分10
2分钟前
alex12259完成签到 ,获得积分10
2分钟前
严冰蝶完成签到 ,获得积分10
2分钟前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
2分钟前
Hao应助幽默的涵山采纳,获得10
2分钟前
刘丰完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612026
求助须知:如何正确求助?哪些是违规求助? 4696186
关于积分的说明 14890576
捐赠科研通 4730987
什么是DOI,文献DOI怎么找? 2546115
邀请新用户注册赠送积分活动 1510425
关于科研通互助平台的介绍 1473310