Vision Transformers for Classification of Breast Ultrasound Images

人工智能 乳腺超声检查 计算机科学 卷积神经网络 模式识别(心理学) 上下文图像分类 乳腺癌 深度学习 超声波 医学影像学 机器学习 人工神经网络 乳腺摄影术 医学 图像(数学) 放射科 内科学 癌症
作者
Behnaz Gheflati,Hassan Rivaz
标识
DOI:10.1109/embc48229.2022.9871809
摘要

Medical ultrasound (US) imaging has become a prominent modality for breast cancer imaging due to its ease of use, low cost, and safety. In the past decade, convolutional neural networks (CNNs) have emerged as the method of choice in vision applications and have shown excellent potential in the automatic classification of US images. Despite their success, their restricted local receptive field limits their ability to learn global context information. Recently, Vision Transformer (ViT) designs, based on self-attention between image patches, have shown great potential to be an alternative to CNNs. In this study, for the first time, we utilize ViT to classify breast US images using different augmentation strategies. We also adopted a weighted cross-entropy loss function since breast ultrasound datasets are often imbalanced. The results are provided as classification accuracy and Area Under the Curve (AUC) metrics, and the performance is compared with the SOTA CNNs. The results indicate that the ViT models have comparable efficiency with or even better than the CNNs in the classification of US breast images. Clinical relevance- This work shows the potential of Vision Transformers in the automatic classification of masses in breast ultrasound, which helps clinicians diagnose and make treatment decisions more precisely.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
reck发布了新的文献求助10
1秒前
完美世界应助子皿采纳,获得10
2秒前
3秒前
直率的心情完成签到,获得积分10
3秒前
可爱的函函应助sam采纳,获得10
3秒前
zhuwei发布了新的文献求助30
3秒前
凡凡发布了新的文献求助10
3秒前
3秒前
4秒前
开朗的凝丝完成签到,获得积分20
4秒前
学术狗发布了新的文献求助10
4秒前
sfaaeaadefef发布了新的文献求助50
4秒前
4秒前
4秒前
不安毛豆应助欣慰煎饼采纳,获得10
4秒前
lixiaotong完成签到,获得积分10
4秒前
4秒前
5秒前
科研通AI2S应助嘿嘿采纳,获得10
5秒前
aczqay完成签到,获得积分10
6秒前
在水一方应助顾志成采纳,获得10
6秒前
小四喜完成签到,获得积分10
6秒前
研友_ZGDVz8发布了新的文献求助10
6秒前
lyl19880908应助lwd采纳,获得10
6秒前
2667495668发布了新的文献求助10
7秒前
约翰完成签到,获得积分10
7秒前
keith发布了新的文献求助10
7秒前
7秒前
8秒前
Hua发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
9秒前
快乐滑板应助reck采纳,获得10
9秒前
笨笨的完成签到,获得积分10
9秒前
Zion完成签到,获得积分10
10秒前
科研通AI5应助阔达蓝血采纳,获得10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
The theory of nuclear magnetic relaxation in liquids 2000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3541251
求助须知:如何正确求助?哪些是违规求助? 3118375
关于积分的说明 9335734
捐赠科研通 2816372
什么是DOI,文献DOI怎么找? 1548349
邀请新用户注册赠送积分活动 721489
科研通“疑难数据库(出版商)”最低求助积分说明 712690