已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Scaffold‐based Deep Generative Model Considering Molecular Stereochemical Information

脚手架 药效团 化学空间 虚拟筛选 计算机科学 化学信息学 药物发现 化学 组合化学 生物系统 计算化学 立体化学 数据库 生物 生物化学
作者
Tianxu Xu,Minjun Wang,Xiaoqian Liu,Donghai Feng,Yanjuan Zhu,Zhe Fan,Shurong Rao,Jing Lü
出处
期刊:Molecular Informatics [Wiley]
卷期号:41 (12)
标识
DOI:10.1002/minf.202200088
摘要

Designing molecules with specific scaffolds can facilitate the discovery and optimization of lead compounds. Some scaffold-based molecular generation models have been developed using deep-learning methods based on specific scaffolds, although incorporating scaffold generalization is expected to achieve scaffold hopping. Moreover, most of the existing models focus on the 2D shape of the scaffold and overlook the stereochemical properties of the compound, especially for natural products. In this study, we optimized the scaffold-based molecular generation model designed by Lim et al. (Chemical Science 2020, 11, 1153-1164). Real-time ultrafast shape recognition with pharmacophore constraints (USRCAT) was introduced into the model to search for molecules similar to the 3D conformation and pharmacophore of the input scaffold sourced from the training set; the searched molecules were then used as new scaffolds to execute scaffold hopping. The optimized model could generate new molecules with the same chirality as the input scaffold. Furthermore, the probability distribution of the molecular structure and various physicochemical properties were analyzed to evaluate the model's generation capability. We thus believe that the optimized model can provide a basis for medicinal chemists to explore a wider chemical space toward optimization of the lead compounds and to screen the virtual compound library.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
4秒前
8R60d8应助潇洒数据线采纳,获得10
5秒前
HYHY发布了新的文献求助10
5秒前
llll发布了新的文献求助10
7秒前
7秒前
情怀应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
账户已注销应助周末采纳,获得30
12秒前
HAOKEE完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
15秒前
16秒前
nnnd77完成签到,获得积分10
16秒前
18秒前
QF发布了新的文献求助10
18秒前
El发布了新的文献求助30
19秒前
19秒前
yeluoyezhi发布了新的文献求助10
19秒前
21秒前
22秒前
lvben发布了新的文献求助10
23秒前
隐形曼青应助nnnd77采纳,获得10
24秒前
24秒前
Doris发布了新的文献求助10
24秒前
llll完成签到,获得积分10
28秒前
29秒前
QYW发布了新的文献求助10
29秒前
十十完成签到,获得积分10
30秒前
30秒前
红星路吃饼子的派大星完成签到 ,获得积分10
30秒前
共享精神应助李思言采纳,获得20
33秒前
33秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154722
求助须知:如何正确求助?哪些是违规求助? 2805534
关于积分的说明 7865058
捐赠科研通 2463710
什么是DOI,文献DOI怎么找? 1311554
科研通“疑难数据库(出版商)”最低求助积分说明 629647
版权声明 601832