糊粉
麸皮
脂肪酶
水解
化学
生物化学
食品科学
酶
有机化学
原材料
作者
Zhongwei Chen,Jiajuan Shen,Yuying Yang,Huijun Wang,Bin Xu
标识
DOI:10.1016/j.foodres.2022.111799
摘要
This work aimed to elucidate the effect of aleurone cell integrity on the hydrolysis of endogenous lipids in wheat bran and flour. The distribution of lipases in the bran dissected layers (aleurone layer, outer pericarp and intermediate layer) and the lipid hydrolysis in the bran fractions and flour containing the aleurone cells with different integrity were investigated. The results indicated that 80% of the lipase activities in bran layers were associated with the aleurone layer. After centrifugal impact milling, the aleurone layer in commercial bran could be detached into the monolayer cell clusters with decreasing integrities as the particle size decreased. In the oil phase, intact aleurone cells did not limit the lipase activities in the bran fractions because the oil could penetrate into aleurone cells. During storage, the hydrolysis rates of endogenous lipids in the bran fractions and their mixed flour increased as the integrity of aleurone cells decreased; while after the aleurone cells were broken, the hydrolysis rates of endogenous lipids increased to be in line with the lipase activities in bran fractions, indicating the limitation of intact aleurone cells on lipid hydrolysis. These results gave a new understanding of the effect of aleurone cell structure on the interaction between lipases and lipids in wheat bran, and will facilitate the production of stable wheat bran and whole wheat flour.
科研通智能强力驱动
Strongly Powered by AbleSci AI