Machine learning for bioelectronics on wearable and implantable devices: challenges and potential

生物电子学 过程(计算) 可穿戴计算机 领域(数学) 人工智能 工程类 计算机科学 可穿戴技术 系统工程 纳米技术 机器学习
作者
Guo Dong Goh,Jia Min Lee,Guo Liang Goh,Xi Huang,Samuel Lee,Wai Yee Yeong
出处
期刊:Tissue Engineering Part A [Mary Ann Liebert]
标识
DOI:10.1089/ten.tea.2022.0119
摘要

Bioelectronics presents a promising future in the field of embedded and implantable electronics, providing a range of functional applications, from personal health monitoring to bioactuators. However, due to the intrinsic difficulties present in producing and optimising bioelectronics, recent research has focused on utilising Machine Learning to reliably mitigate such issues and aid in process development. This review focuses on the recent developments of integrating Machine Learning into bioelectronics, aiding in a multitude of areas such as: material development, fabrication process optimisation and system integration. First, discussing how Machine Learning has aided in the materials development by identifying complex relationships between process input parameters and desired outputs, such as product design. Second, examine the advancements in Machine Learning to accurately optimise fabrication precision and stability for various 3D printing technologies. Third, provide an overview of how Machine Learning can greatly assist in the analysis of complex, non-linear relationships in data obtained from bioelectronics. Lastly, a summary of the challenges present with utilising Machine Learning with bioelectronics and any other developments in this field. Such advancements in the field of bioelectronics and Machine Learning could hopefully build a strong foundation for this research field, promoting smart optimisation together with effective use of Machine Learning to further enhance the effectiveness of such applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文艺白柏完成签到 ,获得积分10
刚刚
Pengwuguang发布了新的文献求助30
刚刚
李爱国应助开飞机的小羊采纳,获得10
1秒前
1秒前
1秒前
2秒前
司徒向彤完成签到 ,获得积分20
3秒前
3秒前
hcs发布了新的文献求助10
5秒前
树叶有专攻完成签到,获得积分10
6秒前
6秒前
啊喽哈发布了新的文献求助10
6秒前
迫切完成签到,获得积分10
6秒前
凡人丿完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
8秒前
8秒前
吉克完成签到,获得积分10
8秒前
腾腾完成签到 ,获得积分10
9秒前
昌莆完成签到,获得积分10
9秒前
10秒前
纪间完成签到,获得积分10
10秒前
doc.level发布了新的文献求助20
11秒前
xjjw发布了新的文献求助10
12秒前
12秒前
tY完成签到,获得积分10
12秒前
13秒前
13秒前
Sir.夏季风完成签到,获得积分10
13秒前
14秒前
16秒前
16秒前
16秒前
Pengwuguang完成签到,获得积分10
17秒前
zyz完成签到,获得积分10
17秒前
17秒前
Summer完成签到,获得积分10
17秒前
Xiaoxin_Ju完成签到,获得积分10
18秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158884
求助须知:如何正确求助?哪些是违规求助? 2810072
关于积分的说明 7885775
捐赠科研通 2468916
什么是DOI,文献DOI怎么找? 1314424
科研通“疑难数据库(出版商)”最低求助积分说明 630616
版权声明 602012