Machine learning for bioelectronics on wearable and implantable devices: challenges and potential

生物电子学 过程(计算) 可穿戴计算机 领域(数学) 人工智能 工程类 计算机科学 可穿戴技术 系统工程 纳米技术 机器学习
作者
Guo Dong Goh,Jia Min Lee,Guo Liang Goh,Xi Huang,Samuel Lee,Wai Yee Yeong
出处
期刊:Tissue Engineering Part A [Mary Ann Liebert]
标识
DOI:10.1089/ten.tea.2022.0119
摘要

Bioelectronics presents a promising future in the field of embedded and implantable electronics, providing a range of functional applications, from personal health monitoring to bioactuators. However, due to the intrinsic difficulties present in producing and optimising bioelectronics, recent research has focused on utilising Machine Learning to reliably mitigate such issues and aid in process development. This review focuses on the recent developments of integrating Machine Learning into bioelectronics, aiding in a multitude of areas such as: material development, fabrication process optimisation and system integration. First, discussing how Machine Learning has aided in the materials development by identifying complex relationships between process input parameters and desired outputs, such as product design. Second, examine the advancements in Machine Learning to accurately optimise fabrication precision and stability for various 3D printing technologies. Third, provide an overview of how Machine Learning can greatly assist in the analysis of complex, non-linear relationships in data obtained from bioelectronics. Lastly, a summary of the challenges present with utilising Machine Learning with bioelectronics and any other developments in this field. Such advancements in the field of bioelectronics and Machine Learning could hopefully build a strong foundation for this research field, promoting smart optimisation together with effective use of Machine Learning to further enhance the effectiveness of such applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
husky完成签到 ,获得积分10
9秒前
科研通AI6.1应助斑ban采纳,获得10
10秒前
沉静完成签到 ,获得积分10
12秒前
Julia完成签到 ,获得积分10
13秒前
含蓄冰蓝完成签到,获得积分10
13秒前
14秒前
14秒前
16秒前
圆彰七大完成签到 ,获得积分10
17秒前
含蓄冰蓝发布了新的文献求助10
18秒前
19秒前
yy完成签到,获得积分10
20秒前
快乐的小胖完成签到,获得积分10
22秒前
yy完成签到,获得积分10
24秒前
混合结构完成签到 ,获得积分10
26秒前
斑ban发布了新的文献求助10
26秒前
深情安青应助yy采纳,获得10
27秒前
29秒前
kid发布了新的文献求助10
34秒前
lizishu举报典雅的灵煌求助涉嫌违规
37秒前
temaxs完成签到 ,获得积分10
40秒前
华仔应助大胆夏兰采纳,获得10
41秒前
完美世界应助kid采纳,获得10
42秒前
凶狠的姚完成签到 ,获得积分10
42秒前
47秒前
51秒前
潇洒斑马完成签到 ,获得积分10
52秒前
rui完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助美琦采纳,获得10
1分钟前
光亮的睿渊完成签到 ,获得积分10
1分钟前
Forever完成签到 ,获得积分10
1分钟前
SSY完成签到 ,获得积分10
1分钟前
Dr.c发布了新的文献求助10
1分钟前
xiaosi完成签到 ,获得积分10
1分钟前
叮叮当当发布了新的文献求助200
1分钟前
科研通AI6.1应助Chengcheng采纳,获得10
1分钟前
TKTK发布了新的文献求助30
1分钟前
花泽秀完成签到,获得积分10
1分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847567
求助须知:如何正确求助?哪些是违规求助? 6227695
关于积分的说明 15620595
捐赠科研通 4964265
什么是DOI,文献DOI怎么找? 2676537
邀请新用户注册赠送积分活动 1621054
关于科研通互助平台的介绍 1576998