互补
缺铁
双分子荧光互补
基因
苹果属植物
生物
非生物胁迫
亚细胞定位
基因表达
ATP酶
内含子
生物化学
遗传学
分子生物学
化学
植物
酶
贫血
表型
内科学
医学
作者
Min Gao,Qiran Sun,Longmei Zhai,Danrui Zhao,Jiahong Lv,Zhenhai Han,Ting Wu,Xinzhong Zhang,Xuefeng Xu,Yi Wang
标识
DOI:10.1016/j.plaphy.2022.08.017
摘要
Iron (Fe) deficiency affects plant growth and development. The proton pump interactor (PPI) in plants responds to multiple abiotic stresses, although it has not been well characterized under Fe deficiency stress. In this study, we systematically identified and analyzed the PPI gene family in apple. Three PPI candidate genes were found, and they contained 318-1349 amino acids and 3-7 introns. Under Fe deficiency stress, we analyzed the expression of all the PPI genes in roots of apple rootstock Malus xiaojinensis. Expression of the gene MD11G1247800, designated PPI1, is obviously induced by Fe deficiency treatment in M. xiaojinensis. We first cloned MxPPI1 from M. xiaojinensis and determined its subcellular localization, which indicated that it is localized in the cell membrane and nucleus in tobacco. We found that the level of expression of the MxPPI1 protein increased significantly under Fe deficiency stress in apple calli. Moreover, overexpressing MxPPI1 in apple calli enhanced the activities of ferric chelate reductase and H+-ATPase, H+ secretion, MxHA2 gene expression and total Fe content when compared with the wild type calli. We further found that MxPPI1 interacted with MxHA2 using bimolecular fluorescence complementation and luciferase complementation assays. Overall, we demonstrated that MxPPI1 interacts with MxHA2 to enhance the activity of H+-ATPase to regulate Fe absorption in M. xiaojinensis.
科研通智能强力驱动
Strongly Powered by AbleSci AI