图层(电子)
外延
液相
材料科学
逐层
晶界
纳米技术
相(物质)
薄膜
光电子学
导电体
化学
复合材料
微观结构
有机化学
物理
热力学
作者
Rui Zheng,Zhihua Fu,Weihua Deng,Yingyi Wen,Ai‐Qian Wu,Xiao‐Liang Ye,Gang Xu
标识
DOI:10.1002/anie.202212797
摘要
Abstract The layer‐by‐layer liquid‐phase epitaxy (LBL‐LPE) method is widely used in preparing metal–organic framework (MOF) thin films with the merits of controlling thickness and out‐of‐plane orientation for superior performances in applications. The LBL‐LPE growth mechanism related to the grain boundary, structure defect, and orientation is critical but very challenging to study. In this work, a novel “in‐plane self‐limiting and self‐repairing” thin‐film growth mechanism is demonstrated by the combination study of the grain boundary, structure defect, and orientation of Cu 3 (HHTP) 2 ‐xC thin film via microscopic analysis techniques and electrical measurements. This mechanism results a desired high‐quality MOF thin film with preferred in‐plane orientations at its bottom for the first time and is very helpful for optimizing the LBL‐LPE method, understanding the growth cycle‐dependent properties of MOF thin film, and inspiring the investigations of the biomimetic self‐repairing materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI