已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Comparing tree attributes derived from quantitative structure models based on drone and mobile laser scanning point clouds across varying canopy cover conditions

天蓬 点云 激光扫描 遥感 激光雷达 树(集合论) 胸径 树冠 加权 牙冠(牙科) 数学 封面(代数) 参考数据 环境科学 计算机科学 统计 人工智能 地理 数据挖掘 林业 激光器 光学 工程类 医学 机械工程 数学分析 物理 考古 放射科 牙科
作者
Yangqian Qi,Nicholas C. Coops,Lori D. Daniels,Christopher R. Butson
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:192: 49-65 被引量:22
标识
DOI:10.1016/j.isprsjprs.2022.07.021
摘要

Complex canopy cover conditions often challenge the accurate measurement of many individual tree attributes that are pivotal to the sustainable management of forest resources. Advances in drone laser scanning (DLS) and mobile laser scanning (MLS) have enabled the acquisition of high-density point clouds with the potential to better resolve detailed tree structures. Yet, the quality of DLS and MLS data can be limited by occlusions and environmental complexities. To quantify the impacts of canopy cover on the tree attribute estimation, this study investigated the utility of DLS and MLS data both individually and combined. Considering the scanning characteristics, we examined direct fusion and a new strategy using a relative weighting scheme based on the probability density of vertical point distribution. We compared the accuracy of seven tree attributes derived from quantitative structure models (QSMs) based on (1) DLS, (2) MLS, (3) fused, and (4) weighted point clouds under low, moderate, and high canopy cover levels. We found that the weighted data improved the modelling efficiency of QSMs by ∼ 20% on average, compared to fused and MLS data. Across canopy cover levels, the fused and weighted data achieved comparable results and outperformed DLS/MLS data in estimating tree attributes. Specifically, diameter at breast height and crown base height were accurately extracted from the fused, weighted, and MLS data under low canopy cover with the concordance correlation coefficient (CCC) > 0.80. As canopy cover increased, they were best estimated using the fused data (CCC > 0.90, RRMSE < 22%). Height was accurate regardless of canopy cover, which was independent of data collection platforms (CCC > 0.80, RRMSE < 16%). The crown diameter was also well estimated by fused, weighted, and MLS data across canopy cover levels (CCC > 0.82, RRMSE < 19%). The total, stem, and branch volumes could be best modelled by the fused data with increasing canopy cover. Overall, the fusion of DLS and MLS point clouds allowed the retrieval of comprehensive tree-level information. However, forestry practitioners still need to evaluate the trade-offs in selecting the most appropriate platform for laser scanning data based on their needs. Future studies should also enhance the modelling of trees with complex branching structures to strengthen the extraction of diverse attributes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ade发布了新的文献求助10
1秒前
搜集达人应助Eric采纳,获得10
2秒前
邓怡发布了新的文献求助10
2秒前
慕青应助特梅头采纳,获得10
3秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
popo完成签到,获得积分10
6秒前
9秒前
9秒前
10秒前
乱世才子完成签到,获得积分10
10秒前
Eunice完成签到 ,获得积分10
11秒前
SILENCE完成签到,获得积分10
12秒前
邓怡完成签到,获得积分10
12秒前
13秒前
14秒前
天真鹤发布了新的文献求助10
14秒前
SILENCE发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
顺利毕业完成签到 ,获得积分10
16秒前
Eric完成签到,获得积分10
17秒前
洪妹妹发布了新的文献求助10
22秒前
25秒前
淦胜坤发布了新的文献求助10
26秒前
27秒前
量子星尘发布了新的文献求助10
27秒前
迟大猫应助傲娇文博采纳,获得10
28秒前
shinyar完成签到 ,获得积分10
30秒前
JIANGSHUI发布了新的文献求助10
31秒前
不安的秋白完成签到,获得积分10
32秒前
yahonyoyoyo发布了新的文献求助10
33秒前
科研通AI5应助yahonyoyoyo采纳,获得10
36秒前
科研通AI2S应助洪妹妹采纳,获得10
36秒前
40秒前
彬彬有李完成签到,获得积分10
41秒前
41秒前
量子星尘发布了新的文献求助10
42秒前
Coo-kie99发布了新的文献求助30
44秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666176
求助须知:如何正确求助?哪些是违规求助? 3225267
关于积分的说明 9762081
捐赠科研通 2935195
什么是DOI,文献DOI怎么找? 1607492
邀请新用户注册赠送积分活动 759217
科研通“疑难数据库(出版商)”最低求助积分说明 735166