Polar Lights Optimizer: Algorithm and Applications in Image Segmentation and Feature Selection

计算机科学 特征选择 人工智能 特征(语言学) 模式识别(心理学) 图像(数学) 分割 图像分割 算法 选择(遗传算法) 计算机视觉 哲学 语言学
作者
Yuan Chong,Dong Zhao,Ali Asghar Heidari,Lei Zhu,Yi Chen,Huiling Chen
出处
期刊:Neurocomputing [Elsevier]
卷期号:607: 128427-128427 被引量:2
标识
DOI:10.1016/j.neucom.2024.128427
摘要

This study introduces Polar Lights Optimization (PLO), an algorithm based on the aurora phenomenon or polar lights. The aurora is a unique natural spectacle that occurs when energetic particles from the solar wind converge at the Earth's poles, influenced by the geomagnetic field and the Earth's atmosphere. By analyzing the motion of high-energy particles and delving into the underlying principles of physics, we propose a unique model for mimicking particle motion. This model integrates gyration motion and aurora oval walk, with the former facilitating local exploitation, while the latter enabling global exploration. By synergistically combining these two strategies, the proposed PLO achieves a balanced approach to local exploitation and global exploration. Additionally, a particle collision strategy is introduced to enhance the efficiency of escaping local optima. To evaluate the performance of PLO, a qualitative analysis experiment is designed to assess its ability to explore the problem space and search for solutions. PLO is compared against 9 classic algorithms and 8 high-performance algorithms using 30 benchmark functions from IEEE CEC2014. Furthermore, we compare and analyze PLO with the current state-of-the-art methods in the field, utilizing 12 benchmark functions from IEEE CEC2022. Subsequently, PLO is successfully applied to multi-threshold image segmentation and feature selection. Specifically, a PLO-based multi-threshold segmentation model and a binary PLO-based feature selection method are developed. The performance of PLO is also evaluated using 10 images from the Invasive Ductal Carcinoma (IDC) medical dataset, while the overall adaptability and accuracy of the feature selection model are tested using 8 medical datasets. These results affirm the emergence of PLO as an effective optimization tool ready for solving real-world problems, including those in the medical field. The source codes of PLO are available at https://aliasgharheidari.com/PLO.html and other websites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柏含卉发布了新的文献求助10
刚刚
Juliet发布了新的文献求助10
刚刚
刚刚
2秒前
小艾完成签到,获得积分10
3秒前
SciGPT应助CC采纳,获得10
4秒前
酷酷海豚发布了新的文献求助30
5秒前
5秒前
Clarissa发布了新的文献求助10
6秒前
善良的沉鱼完成签到,获得积分10
7秒前
7秒前
輝23发布了新的文献求助20
7秒前
8秒前
9秒前
三磷酸腺苷完成签到 ,获得积分10
9秒前
Forsyl完成签到,获得积分20
9秒前
10秒前
10秒前
qcy72完成签到,获得积分10
11秒前
从容雨筠完成签到,获得积分10
11秒前
11秒前
12秒前
眯眯眼的青文给阔达远锋的求助进行了留言
12秒前
lbpo发布了新的文献求助10
12秒前
13秒前
13秒前
鸣蜩阿六发布了新的文献求助10
14秒前
最爱吃芒果完成签到,获得积分10
14秒前
丘比特应助唠叨的老九采纳,获得10
14秒前
14秒前
polar发布了新的文献求助10
15秒前
jgpiao发布了新的文献求助10
16秒前
16秒前
16秒前
研友_Z6k7B8发布了新的文献求助10
16秒前
17秒前
17秒前
tina完成签到,获得积分20
17秒前
18秒前
璨澄完成签到 ,获得积分10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135235
求助须知:如何正确求助?哪些是违规求助? 2786181
关于积分的说明 7776022
捐赠科研通 2442078
什么是DOI,文献DOI怎么找? 1298417
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847