Polar Lights Optimizer: Algorithm and Applications in Image Segmentation and Feature Selection

计算机科学 特征选择 人工智能 特征(语言学) 模式识别(心理学) 图像(数学) 分割 图像分割 算法 选择(遗传算法) 计算机视觉 哲学 语言学
作者
Yuan Chong,Dong Zhao,Ali Asghar Heidari,Lei Liu,Yi Chen,Huiling Chen
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:607: 128427-128427 被引量:28
标识
DOI:10.1016/j.neucom.2024.128427
摘要

This study introduces Polar Lights Optimization (PLO), an algorithm based on the aurora phenomenon or polar lights. The aurora is a unique natural spectacle that occurs when energetic particles from the solar wind converge at the Earth's poles, influenced by the geomagnetic field and the Earth's atmosphere. By analyzing the motion of high-energy particles and delving into the underlying principles of physics, we propose a unique model for mimicking particle motion. This model integrates gyration motion and aurora oval walk, with the former facilitating local exploitation, while the latter enabling global exploration. By synergistically combining these two strategies, the proposed PLO achieves a balanced approach to local exploitation and global exploration. Additionally, a particle collision strategy is introduced to enhance the efficiency of escaping local optima. To evaluate the performance of PLO, a qualitative analysis experiment is designed to assess its ability to explore the problem space and search for solutions. PLO is compared against 9 classic algorithms and 8 high-performance algorithms using 30 benchmark functions from IEEE CEC2014. Furthermore, we compare and analyze PLO with the current state-of-the-art methods in the field, utilizing 12 benchmark functions from IEEE CEC2022. Subsequently, PLO is successfully applied to multi-threshold image segmentation and feature selection. Specifically, a PLO-based multi-threshold segmentation model and a binary PLO-based feature selection method are developed. The performance of PLO is also evaluated using 10 images from the Invasive Ductal Carcinoma (IDC) medical dataset, while the overall adaptability and accuracy of the feature selection model are tested using 8 medical datasets. These results affirm the emergence of PLO as an effective optimization tool ready for solving real-world problems, including those in the medical field. The source codes of PLO are available at https://aliasgharheidari.com/PLO.html and other websites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aa完成签到,获得积分10
刚刚
FashionBoy应助高挑的墨镜采纳,获得10
1秒前
可爱的函函应助lan采纳,获得10
1秒前
科研通AI5应助tatai采纳,获得10
2秒前
YORLAN完成签到 ,获得积分10
2秒前
xinxin98发布了新的文献求助10
3秒前
ding应助xiaowang采纳,获得10
3秒前
药化的彦祖完成签到,获得积分10
3秒前
我要发sci完成签到,获得积分20
3秒前
历史真相发布了新的文献求助10
3秒前
科目三应助Monster采纳,获得10
3秒前
佳loong完成签到,获得积分10
4秒前
科目三应助mementomori采纳,获得10
5秒前
5秒前
5秒前
fang完成签到 ,获得积分10
6秒前
7秒前
7秒前
搜集达人应助123456采纳,获得10
9秒前
医路潜行发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
tatai完成签到,获得积分20
10秒前
10秒前
高挑的墨镜完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
Ava应助金木水火土采纳,获得10
12秒前
13秒前
lan发布了新的文献求助10
13秒前
14秒前
Lucas应助静不净采纳,获得10
14秒前
栗栗完成签到 ,获得积分10
14秒前
dsf发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
17秒前
linmm完成签到 ,获得积分10
18秒前
Ava应助zyz采纳,获得10
19秒前
圈圈叉叉完成签到,获得积分10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662898
求助须知:如何正确求助?哪些是违规求助? 3223698
关于积分的说明 9752620
捐赠科研通 2933587
什么是DOI,文献DOI怎么找? 1606194
邀请新用户注册赠送积分活动 758307
科研通“疑难数据库(出版商)”最低求助积分说明 734775