Mechanical properties and cage transformations in CO2-CH4 heterohydrates: a molecular dynamics and machine learning study

笼子 分子动力学 动力学(音乐) 计算机科学 化学 化学物理 物理 计算化学 数学 组合数学 声学
作者
Yu Zhang,Xintong Liu,Qiao Shi,Yongxiao Qu,Yongchao Hao,Yuequn Fu,Jianyang Wu,Zhisen Zhang
出处
期刊:Journal of Physics D [Institute of Physics]
卷期号:57 (46): 465302-465302 被引量:5
标识
DOI:10.1088/1361-6463/ad6dcf
摘要

Abstract The substitution of natural gas hydrates with CO 2 offers a compelling dual advantage by enabling the extracting of CH 4 while simultaneously sequestering CO 2 . This process, however, is intricately tied to the mechanical stability of CO 2 -CH 4 heterohydrates. In this study, we report the mechanical properties and cage transformations in CO 2 -CH 4 heterohydrates subjected to uniaxial straining via molecular dynamics (MD) simulations and machine learning (ML). Results indicate that guest molecule occupancy, the ratio of CO 2 to CH 4 and their spatial arrangements within heterohydrate structure greatly dictate the mechanical properties of CO 2 –CH 4 heterohydrates including Young’s modulus, tensile strength, and critical strain. Notable, the introduction of CO 2 within clathrate cages, particularly within 5 12 small cages, weakens the stability of CO 2 –CH 4 heterohydrates in terms of mechanical properties. Upon critical strains, unconventional clathrate cages form, contributing to loading stress oscillation before fracture of heterohydrates. Intriguingly, predominant cage transformations, such as 5 12 6 2 –4 1 5 10 6 3 or 4 2 5 8 6 4 and 5 12 –4 2 5 8 6 1 cages, are identified, in which 4 1 5 10 6 2 appears as primary intermediate cage that is able to transform into 4 1 5 10 6 3 , 4 2 5 8 6 2 , 4 2 5 8 6 3 , 5 12 and 5 12 6 2 cages, unveiling the dynamic nature of heterohydrate structures under straining. Additionally, ML models developed using MD data well predict the mechanical properties of heterohydrates, and underscore the critical influence of the spatial arrangement of guest molecules on the mechanical properties. These newly-developed ML models serve as valuable tools for accurately predicting the mechanical properties of heterohydrates. This study provides fresh insights into the mechanical properties and cage transformations in heterohydrates in response to strain, holding significant implications for environmentally sustainable utilization of CO 2 –CH 4 heterohydrates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赘婿应助sssss采纳,获得60
刚刚
淡然棒球完成签到 ,获得积分10
刚刚
翻翻发布了新的文献求助10
1秒前
方囧发布了新的文献求助10
2秒前
SciGPT应助聪明白开水采纳,获得10
2秒前
猫小曼发布了新的文献求助10
2秒前
紫陌发布了新的文献求助10
3秒前
geen发布了新的文献求助20
4秒前
youlico发布了新的文献求助10
4秒前
23lk发布了新的文献求助10
5秒前
善学以致用应助海豹采纳,获得10
5秒前
平常如天完成签到,获得积分10
5秒前
田様应助路过你的夏采纳,获得10
6秒前
7秒前
乐乐2333333完成签到,获得积分10
7秒前
淡然棒球关注了科研通微信公众号
8秒前
bkagyin应助youlico采纳,获得10
9秒前
可爱的函函应助猫小曼采纳,获得10
9秒前
完美世界应助23lk采纳,获得10
11秒前
wwmmyy完成签到 ,获得积分10
11秒前
传奇3应助hh采纳,获得10
12秒前
喵小权完成签到,获得积分10
12秒前
arzw完成签到,获得积分10
13秒前
小笨猪完成签到,获得积分10
15秒前
menmian完成签到,获得积分10
16秒前
16秒前
猫小曼完成签到,获得积分10
17秒前
17秒前
Lau完成签到,获得积分10
20秒前
李健应助瘦瘦的小之采纳,获得10
21秒前
kk发布了新的文献求助10
21秒前
丁丁猫老大完成签到 ,获得积分10
22秒前
狂野的驳完成签到 ,获得积分10
22秒前
23秒前
geen完成签到,获得积分10
23秒前
海清完成签到,获得积分10
24秒前
CodeCraft应助22222采纳,获得10
24秒前
hh发布了新的文献求助10
25秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956621
求助须知:如何正确求助?哪些是违规求助? 3502685
关于积分的说明 11109755
捐赠科研通 3233502
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870676
科研通“疑难数据库(出版商)”最低求助积分说明 802143