Day-Ahead electricity price forecasting using a CNN-BiLSTM model in conjunction with autoregressive modeling and hyperparameter optimization

超参数 电价预测 自回归模型 计算机科学 人工智能 会合(天文学) 机器学习 超参数优化 计量经济学 电力市场 经济 工程类 支持向量机 电气工程 物理 天文
作者
Hamza Mubarak,Abdallah Abdellatif,Shameem Ahmad,Md. Zohurul Islam,S. M. Muyeen,Mohammad Abdul Mannan,Innocent Kamwa
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier]
卷期号:161: 110206-110206
标识
DOI:10.1016/j.ijepes.2024.110206
摘要

The inherent volatility in electricity prices exerts a significant impact on the dynamic nature of the electricity market, shaping the decision-making processes of its stakeholders. Precise Electricity Price Forecasting (EPF) plays a pivotal role in enabling energy suppliers to optimize their bidding strategies, mitigate transactional risks, and capitalize on market opportunities, thereby ensuring alignment with the true economic value of energy transactions. Hence, this study proposes an advanced deep learning model for forecasting electricity prices one day in ahead. The model leverages the synergistic capabilities of Convolutional Neural Networks (CNN) and bidirectional Long Short-Term Memory networks (BiLSTM), operating concurrently with an autoregressive (AR) component, denoted as CNN-BiLSTM-AR. The integration of the AR model alongside CNN-BiLSTM enhances overall performance by exploiting AR's proficiency in capturing transient linear dependencies. Simultaneously, CNN-BiLSTM excels in assimilating spatial and protracted temporal features. Moreover, the research delves into the implications of incorporating hyperparameter optimization (HPO) techniques, such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Random Search (RS). The effectiveness of the model is evaluated using two distinct European datasets sourced from the UK and German electricity markets. Performance metrics, including Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), serve as benchmarks for assessment. Finally, the findings underscore the notable performance enhancement achieved through the implementation of HPO methods in conjunction with the proposed model. Especially, the PSO-CNN-BiLSTM-AR model demonstrates substantial reductions in RMSE and MAE, amounting to 16.7% and 23.46%, respectively, for the German electricity market.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Johnwick完成签到,获得积分10
刚刚
千寻完成签到 ,获得积分10
1秒前
gengqiao完成签到,获得积分10
1秒前
慕青应助maxyer采纳,获得10
1秒前
jsinm-thyroid发布了新的文献求助10
2秒前
Sunny-simit完成签到,获得积分10
2秒前
qqz发布了新的文献求助10
2秒前
共享精神应助Yohok采纳,获得30
3秒前
ohhhh驳回了Jun应助
3秒前
3秒前
4秒前
qq发布了新的文献求助10
5秒前
RUOXI发布了新的文献求助10
5秒前
Johnwick发布了新的文献求助10
5秒前
lgh发布了新的文献求助10
5秒前
上官若男应助木木采纳,获得30
6秒前
学子完成签到,获得积分10
7秒前
7秒前
我是老大应助zxy采纳,获得10
8秒前
8秒前
8秒前
优美寒梦完成签到,获得积分10
9秒前
缥缈的万声完成签到,获得积分10
9秒前
喵阿無发布了新的文献求助10
9秒前
10秒前
11秒前
英俊的铭应助魔幻的访云采纳,获得10
12秒前
heyfan完成签到 ,获得积分10
12秒前
12秒前
13秒前
xiaohaitao发布了新的文献求助10
14秒前
For_winter完成签到,获得积分10
14秒前
15秒前
17秒前
wanci应助zhouyu采纳,获得10
17秒前
奋斗雪曼完成签到,获得积分10
17秒前
以琳发布了新的文献求助10
17秒前
18秒前
18秒前
稳重镜子完成签到,获得积分10
18秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156829
求助须知:如何正确求助?哪些是违规求助? 2808171
关于积分的说明 7876754
捐赠科研通 2466574
什么是DOI,文献DOI怎么找? 1312950
科研通“疑难数据库(出版商)”最低求助积分说明 630334
版权声明 601919