Utilizing GPT-4 for CT Image Analysis in Cerebral Hemorrhage: Innovating Applications of Natural Language Processing in Radiology (Preprint)

预印本 放射科 医学 计算机科学 自然(考古学) 图像处理 图像(数学) 人工智能 医学物理学 自然语言处理 万维网 考古 历史
作者
Daiwen Zhang,Zixuan Ma,Ru Gong,Liangliang Lian,Yanzhuo Li,Zhenghui He,Yuhan Han,Jiyuan Hui,Jialin Huang,Jiyao Jiang,Weiji Weng,Junfeng Feng
出处
期刊:Journal of Medical Internet Research 卷期号:26: e58741-e58741
标识
DOI:10.2196/58741
摘要

Background Cerebral hemorrhage is a critical medical condition that necessitates a rapid and precise diagnosis for timely medical intervention, including emergency operation. Computed tomography (CT) is essential for identifying cerebral hemorrhage, but its effectiveness is limited by the availability of experienced radiologists, especially in resource-constrained regions or when shorthanded during holidays or at night. Despite advancements in artificial intelligence–driven diagnostic tools, most require technical expertise. This poses a challenge for widespread adoption in radiological imaging. The introduction of advanced natural language processing (NLP) models such as GPT-4, which can annotate and analyze images without extensive algorithmic training, offers a potential solution. Objective This study investigates GPT-4’s capability to identify and annotate cerebral hemorrhages in cranial CT scans. It represents a novel application of NLP models in radiological imaging. Methods In this retrospective analysis, we collected 208 CT scans with 6 types of cerebral hemorrhages at Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, between January and September 2023. All CT images were mixed together and sequentially numbered, so each CT image had its own corresponding number. A random sequence from 1 to 208 was generated, and all CT images were inputted into GPT-4 for analysis in the order of the random sequence. The outputs were subsequently examined using Photoshop and evaluated by experienced radiologists on a 4-point scale to assess identification completeness, accuracy, and success. Results The overall identification completeness percentage for the 6 types of cerebral hemorrhages was 72.6% (SD 18.6%). Specifically, GPT-4 achieved higher identification completeness in epidural and intraparenchymal hemorrhages (89.0%, SD 19.1% and 86.9%, SD 17.7%, respectively), yet its identification completeness percentage in chronic subdural hemorrhages was very low (37.3%, SD 37.5%). The misidentification percentages for complex hemorrhages (54.0%, SD 28.0%), epidural hemorrhages (50.2%, SD 22.7%), and subarachnoid hemorrhages (50.5%, SD 29.2%) were relatively high, whereas they were relatively low for acute subdural hemorrhages (32.6%, SD 26.3%), chronic subdural hemorrhages (40.3%, SD 27.2%), and intraparenchymal hemorrhages (26.2%, SD 23.8%). The identification completeness percentages in both massive and minor bleeding showed no significant difference (P=.06). However, the misidentification percentage in recognizing massive bleeding was significantly lower than that for minor bleeding (P=.04). The identification completeness percentages and misidentification percentages for cerebral hemorrhages at different locations showed no significant differences (all P>.05). Lastly, radiologists showed relative acceptance regarding identification completeness (3.60, SD 0.54), accuracy (3.30, SD 0.65), and success (3.38, SD 0.64). Conclusions GPT-4, a standout among NLP models, exhibits both promising capabilities and certain limitations in the realm of radiological imaging, particularly when it comes to identifying cerebral hemorrhages in CT scans. This opens up new directions and insights for the future development of NLP models in radiology. Trial Registration ClinicalTrials.gov NCT06230419; https://clinicaltrials.gov/study/NCT06230419

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助健忘的初翠采纳,获得10
刚刚
废H发布了新的文献求助10
刚刚
ningning发布了新的文献求助10
1秒前
科研Uzi应助YANGLan采纳,获得10
1秒前
虚心十三完成签到,获得积分20
1秒前
mygod发布了新的文献求助10
3秒前
以恒之心完成签到,获得积分10
4秒前
5秒前
6秒前
所所应助THINKG采纳,获得30
7秒前
7秒前
7秒前
我是老大应助机智台灯采纳,获得10
7秒前
9秒前
科目三应助ningning采纳,获得10
9秒前
10秒前
倦鸟有言发布了新的文献求助10
10秒前
大模型应助mygod采纳,获得10
11秒前
如意的水云完成签到,获得积分10
12秒前
调研昵称发布了新的文献求助10
13秒前
13秒前
14秒前
欢呼的寻双完成签到,获得积分20
14秒前
缓慢凝梦完成签到,获得积分10
15秒前
saidosiuceyiwo完成签到 ,获得积分10
15秒前
15秒前
充电宝应助Puokn采纳,获得10
16秒前
16秒前
春风晚发布了新的文献求助10
17秒前
17秒前
蟑螂你好发布了新的文献求助10
17秒前
17秒前
蔡翌文完成签到 ,获得积分10
17秒前
111完成签到,获得积分10
18秒前
虚心十三发布了新的文献求助10
18秒前
18秒前
李本来发布了新的文献求助10
19秒前
yanxun发布了新的文献求助10
19秒前
任逍遥发布了新的文献求助10
20秒前
123by发布了新的文献求助10
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149112
求助须知:如何正确求助?哪些是违规求助? 2800154
关于积分的说明 7838819
捐赠科研通 2457690
什么是DOI,文献DOI怎么找? 1307972
科研通“疑难数据库(出版商)”最低求助积分说明 628363
版权声明 601706