Utilizing GPT-4 for CT Image Analysis in Cerebral Hemorrhage: Innovating Applications of Natural Language Processing in Radiology (Preprint)

预印本 放射科 医学 计算机科学 自然(考古学) 图像处理 图像(数学) 人工智能 医学物理学 自然语言处理 万维网 历史 考古
作者
Daiwen Zhang,Zixuan Ma,Ru Gong,Liangliang Lian,Yanzhuo Li,Zhenghui He,Yuhan Han,Jiyuan Hui,Jialin Huang,Jiyao Jiang,Weiji Weng,Junfeng Feng
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e58741-e58741
标识
DOI:10.2196/58741
摘要

Background Cerebral hemorrhage is a critical medical condition that necessitates a rapid and precise diagnosis for timely medical intervention, including emergency operation. Computed tomography (CT) is essential for identifying cerebral hemorrhage, but its effectiveness is limited by the availability of experienced radiologists, especially in resource-constrained regions or when shorthanded during holidays or at night. Despite advancements in artificial intelligence–driven diagnostic tools, most require technical expertise. This poses a challenge for widespread adoption in radiological imaging. The introduction of advanced natural language processing (NLP) models such as GPT-4, which can annotate and analyze images without extensive algorithmic training, offers a potential solution. Objective This study investigates GPT-4’s capability to identify and annotate cerebral hemorrhages in cranial CT scans. It represents a novel application of NLP models in radiological imaging. Methods In this retrospective analysis, we collected 208 CT scans with 6 types of cerebral hemorrhages at Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, between January and September 2023. All CT images were mixed together and sequentially numbered, so each CT image had its own corresponding number. A random sequence from 1 to 208 was generated, and all CT images were inputted into GPT-4 for analysis in the order of the random sequence. The outputs were subsequently examined using Photoshop and evaluated by experienced radiologists on a 4-point scale to assess identification completeness, accuracy, and success. Results The overall identification completeness percentage for the 6 types of cerebral hemorrhages was 72.6% (SD 18.6%). Specifically, GPT-4 achieved higher identification completeness in epidural and intraparenchymal hemorrhages (89.0%, SD 19.1% and 86.9%, SD 17.7%, respectively), yet its identification completeness percentage in chronic subdural hemorrhages was very low (37.3%, SD 37.5%). The misidentification percentages for complex hemorrhages (54.0%, SD 28.0%), epidural hemorrhages (50.2%, SD 22.7%), and subarachnoid hemorrhages (50.5%, SD 29.2%) were relatively high, whereas they were relatively low for acute subdural hemorrhages (32.6%, SD 26.3%), chronic subdural hemorrhages (40.3%, SD 27.2%), and intraparenchymal hemorrhages (26.2%, SD 23.8%). The identification completeness percentages in both massive and minor bleeding showed no significant difference (P=.06). However, the misidentification percentage in recognizing massive bleeding was significantly lower than that for minor bleeding (P=.04). The identification completeness percentages and misidentification percentages for cerebral hemorrhages at different locations showed no significant differences (all P>.05). Lastly, radiologists showed relative acceptance regarding identification completeness (3.60, SD 0.54), accuracy (3.30, SD 0.65), and success (3.38, SD 0.64). Conclusions GPT-4, a standout among NLP models, exhibits both promising capabilities and certain limitations in the realm of radiological imaging, particularly when it comes to identifying cerebral hemorrhages in CT scans. This opens up new directions and insights for the future development of NLP models in radiology. Trial Registration ClinicalTrials.gov NCT06230419; https://clinicaltrials.gov/study/NCT06230419

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长安发布了新的文献求助10
刚刚
3秒前
ddddddd完成签到,获得积分20
4秒前
章半仙完成签到,获得积分10
5秒前
6秒前
8秒前
amberzyc应助小远采纳,获得10
9秒前
qiongqiong完成签到,获得积分10
10秒前
淡定的依瑶完成签到,获得积分10
11秒前
江璃发布了新的文献求助10
13秒前
14秒前
15秒前
美丽的安珊完成签到,获得积分10
16秒前
16秒前
18秒前
Gilana完成签到,获得积分10
18秒前
xyh发布了新的文献求助10
18秒前
江璃完成签到,获得积分10
19秒前
TT发布了新的文献求助10
19秒前
美梦成真完成签到,获得积分10
20秒前
Gakay完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
szj完成签到,获得积分0
22秒前
旦皋完成签到,获得积分10
22秒前
赘婿应助花壳在逃野猪采纳,获得10
23秒前
卷卷完成签到,获得积分10
25秒前
JSY完成签到 ,获得积分20
25秒前
xyh完成签到,获得积分10
26秒前
小曾应助Florencia采纳,获得10
27秒前
神外王001完成签到 ,获得积分10
27秒前
32秒前
你是谁完成签到,获得积分10
33秒前
majf完成签到,获得积分10
34秒前
linhanwenzhou完成签到,获得积分10
34秒前
JSY关注了科研通微信公众号
34秒前
853225598完成签到,获得积分10
34秒前
798完成签到,获得积分10
35秒前
善学以致用应助董怼怼采纳,获得10
35秒前
妍儿完成签到,获得积分20
36秒前
隐形曼青应助高大的水壶采纳,获得10
36秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029