亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence model for enhancing the accuracy of transvaginal ultrasound in detecting endometrial cancer and endometrial atypical hyperplasia

医学 子宫内膜癌 经阴道超声 子宫内膜增生 妇科 非典型增生 肿瘤科 超声波 放射科 增生 产科 子宫内膜 癌症 内科学
作者
Ilaria Capasso,Giuseppe Cucinella,Darryl Wright,Hiroaki Takahashi,Luigi Antonio De Vitis,Adriana Gregory,Chan Kyo Kim,Evelyn Reynolds,Diletta Fumagalli,Tommaso Occhiali,Angela J. Fought,Michaela E. McGree,Ann T. Packard,P Andrieu,Francesco Fanfani,Giovanni Scambia,Carrie Langstraat,Abimbola O. Famuyide,Daniel M. Breitkopf,Andrea Mariani
出处
期刊:International Journal of Gynecological Cancer [BMJ]
卷期号:34 (10): 1547-1555 被引量:3
标识
DOI:10.1136/ijgc-2024-005652
摘要

Objectives Transvaginal ultrasound is typically the initial diagnostic approach in patients with postmenopausal bleeding for detecting endometrial atypical hyperplasia/cancer. Although transvaginal ultrasound demonstrates notable sensitivity, its specificity remains limited. The objective of this study was to enhance the diagnostic accuracy of transvaginal ultrasound through the integration of artificial intelligence. By using transvaginal ultrasound images, we aimed to develop an artificial intelligence based automated segmentation model and an artificial intelligence based classifier model. Methods Patients with postmenopausal bleeding undergoing transvaginal ultrasound and endometrial sampling at Mayo Clinic between 2016 and 2021 were retrospectively included. Manual segmentation of images was performed by four physicians (readers). Patients were classified into cohort A (atypical hyperplasia/cancer) and cohort B (benign) based on the pathologic report of endometrial sampling. A fully automated segmentation model was developed, and the performance of the model in correctly identifying the endometrium was compared with physician made segmentation using similarity metrics. To develop the classifier model, radiomic features were calculated from the manually segmented regions-of-interest. These features were used to train a wide range of machine learning based classifiers. The top performing machine learning classifier was evaluated using a threefold approach, and diagnostic accuracy was assessed through the F1 score and area under the receiver operating characteristic curve (AUC-ROC). Results 302 patients were included. Automated segmentation–reader agreement was 0.79±0.21 using the Dice coefficient. For the classification task, 92 radiomic features related to pixel texture/shape/intensity were found to be significantly different between cohort A and B. The threefold evaluation of the top performing classifier model showed an AUC-ROC of 0.90 (range 0.88–0.92) on the validation set and 0.88 (range 0.86–0.91) on the hold-out test set. Sensitivity and specificity were 0.87 (range 0.77–0.94) and 0.86 (range 0.81–0.94), respectively. Conclusions We trained an artificial intelligence based algorithm to differentiate endometrial atypical hyperplasia/cancer from benign conditions on transvaginal ultrasound images in a population of patients with postmenopausal bleeding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
29秒前
杨学清发布了新的文献求助10
33秒前
no1lbt完成签到 ,获得积分10
44秒前
大模型应助杨学清采纳,获得10
49秒前
nicolaslcq完成签到,获得积分10
1分钟前
捉迷藏完成签到,获得积分10
1分钟前
火以敬完成签到,获得积分10
1分钟前
孙阳阳完成签到 ,获得积分10
2分钟前
2分钟前
小垃圾发布了新的文献求助10
2分钟前
2分钟前
chnhen发布了新的文献求助10
3分钟前
科研通AI5应助小垃圾采纳,获得10
3分钟前
yuyu完成签到,获得积分10
3分钟前
草木发布了新的文献求助10
3分钟前
研友_nVWP2Z完成签到 ,获得积分10
3分钟前
chnhen完成签到,获得积分10
4分钟前
充电宝应助科研通管家采纳,获得10
4分钟前
善学以致用应助Aqib采纳,获得10
5分钟前
xicifish完成签到,获得积分10
5分钟前
朱朱子完成签到 ,获得积分10
5分钟前
冷冷完成签到 ,获得积分10
6分钟前
ffff完成签到 ,获得积分10
6分钟前
沉默牛排完成签到 ,获得积分10
6分钟前
传奇完成签到 ,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科目三应助科研通管家采纳,获得10
6分钟前
莱芙完成签到 ,获得积分10
7分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
酷波er应助科研通管家采纳,获得10
8分钟前
铅笔995完成签到,获得积分10
8分钟前
blenx完成签到,获得积分10
8分钟前
9分钟前
隐形的易巧完成签到,获得积分10
9分钟前
9分钟前
9分钟前
LiJie驳回了情怀应助
9分钟前
caca完成签到,获得积分10
10分钟前
jyy发布了新的文献求助200
10分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736630
求助须知:如何正确求助?哪些是违规求助? 3280584
关于积分的说明 10020088
捐赠科研通 2997293
什么是DOI,文献DOI怎么找? 1644517
邀请新用户注册赠送积分活动 782041
科研通“疑难数据库(出版商)”最低求助积分说明 749648