已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

YOLO-PowerLite: A Lightweight YOLO Model for Transmission Line Abnormal Target Detection

计算机科学 目标检测 传输(电信) 计算机视觉 人工智能 模式识别(心理学) 电信
作者
Chuanyao Liu,Shuangfeng Wei,Shaobo Zhong,Fan Yu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 105004-105015
标识
DOI:10.1109/access.2024.3434687
摘要

The secure and stable operation of power transmission lines is essential for electrical systems. Given that abnormal targets such as bird's nests and defective insulators may lead to transmission failures, timely detection of these targets is imperative. This paper introduces the YOLO-PowerLite model, an advanced lightweight object detection model based on YOLOv8n, designed for efficient, real-time detection on resource-constrained unmanned aerial vehicles (UAVs) equipped with edge computing platforms. In the feature fusion module, YOLO-PowerLite incorporates the innovative C2f_AK module, significantly reducing the number of parameters and enhancing the adaptability and fusion capability of features at different scales. Meanwhile, the adoption of the Bidirectional Feature Pyramid Network (BiFPN) further optimizes the efficiency and effectiveness of feature processing. In addition, the newly designed lightweight detection head significantly reduces the number of parameters and computational requirements. The integration of the Coordinate Attention mechanism in the backbone network enhances the model's ability to focus on and recognize abnormal targets in complex backgrounds. Experimental results show that YOLO-PowerLite achieves a mAP@0.5 of 94.2%, maintaining the accuracy of the original YOLOv8n while significantly reducing parameters, FLOPs, and model size by 42.3%, 30.9%, and 40.4%, respectively. Comparative analysis shows that YOLO-PowerLite surpasses other mainstream lightweight models in detection accuracy and computational efficiency. Deployment on the NVIDIA Jetson Xavier NX platform demonstrates an average processing time of 31.2 milliseconds per frame, highlighting its potential for real-time applications in monitoring transmission lines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拖把丶完成签到,获得积分10
3秒前
保持好心情完成签到 ,获得积分10
4秒前
tian关注了科研通微信公众号
7秒前
ccm应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得30
11秒前
Akim应助科研通管家采纳,获得30
11秒前
Owen应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
稚北森林完成签到 ,获得积分10
15秒前
研友_VZG7GZ应助掌柜采纳,获得10
16秒前
18秒前
开拖拉机的芍药完成签到 ,获得积分10
21秒前
文艺沛文发布了新的文献求助10
21秒前
Jasper应助一秋一年采纳,获得10
21秒前
tian发布了新的文献求助10
22秒前
娜扎完成签到,获得积分20
23秒前
25秒前
25秒前
掌柜完成签到,获得积分10
26秒前
26秒前
26秒前
娜扎发布了新的文献求助10
28秒前
掌柜发布了新的文献求助10
29秒前
29秒前
刘平平发布了新的文献求助10
30秒前
流星发布了新的文献求助10
31秒前
32秒前
齐小明发布了新的文献求助10
32秒前
33秒前
SciGPT应助文艺沛文采纳,获得10
34秒前
勤奋迎天完成签到,获得积分10
37秒前
38秒前
sunboy14521完成签到 ,获得积分10
38秒前
一秋一年发布了新的文献求助10
38秒前
HYT完成签到 ,获得积分10
40秒前
NexusExplorer应助仁爱的平彤采纳,获得10
40秒前
42秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Pearson Edxecel IGCSE English Language B 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142320
求助须知:如何正确求助?哪些是违规求助? 2793260
关于积分的说明 7806108
捐赠科研通 2449516
什么是DOI,文献DOI怎么找? 1303345
科研通“疑难数据库(出版商)”最低求助积分说明 626823
版权声明 601300