坏死性下垂
自噬
生物
程序性细胞死亡
视网膜变性
转录组
基因
疾病
细胞生物学
感光细胞
遗传学
视网膜
神经科学
细胞凋亡
医学
基因表达
病理
作者
Fay Newton,Mihail Halachev,Linda Nguyen,Lisa McKie,Pleasantine Mill,Roly Megaw
标识
DOI:10.1101/2024.08.02.606303
摘要
Inherited retinal diseases (IRDs) are a leading cause of blindness worldwide. One of the greatest barriers to developing treatments for IRDs is the heterogeneity of these disorders, with causative mutations identified in over 280 genes. It is therefore a priority to find therapies applicable to a broad range of genetic causes. To do so requires a greater understanding of the common or overlapping molecular pathways that lead to photoreceptor death in IRDs and the molecular processes through which they converge. Here, we characterise the contribution of different cell death mechanisms to photoreceptor degeneration and loss throughout disease progression in humanised mouse models of IRDs. Using single-cell transcriptomics, we identify common transcriptional signatures in degenerating photoreceptors. Further, we show that in genetically and functionally distinct IRD models, common early defects in autophagy and mitochondrial damage exist, triggering photoreceptor cell death by necroptosis in later disease stages. These results suggest that, regardless of the underlying genetic cause, these pathways likely contribute to cell death in IRDs. These insights provide potential therapeutic targets for novel, gene-agnostic treatments for IRDs applicable to the majority of patients.
科研通智能强力驱动
Strongly Powered by AbleSci AI