重编程
结直肠癌
癌症
癌症研究
生物
小分子
体内
癌细胞
生物化学
化学
细胞
遗传学
作者
Li Feng,Xinjia Wang,Xinrui Guo,Liyuan Shi,Shihuang Su,Xinjing Li,Li Wang,Ning‐Hua Tan,Yi Ma,Li Wang
标识
DOI:10.1002/ange.202402543
摘要
Colorectal cancer (CRC) is one of the most common malignant tumours. Identification of new effective drug targets for CRC and exploration of bioactive small‐molecules are clinically urgent. The human dCTP pyrophosphatase 1 (DCTPP1) is a newly identified pyrophosphatase regulating the cellular nucleotide pool but remains unexplored as potential target for CRC treatment. Here, twelve unprecedented chemical architectures terpene‐nonadride heterodimers (1–12) and their monomers (13–20) were isolated from endophyte Bipolaris victoriae S27. Compounds 1–12 represented the first example of terpene‐nonadride heterodimers, in which nonadride monomers of 1 and 2 were also first example of 5/6 bicyclic nonadrides. A series of assays showed that 2 could repress proliferation and induce cell cycle arrest, apoptotic and autophagic CRC cell death in vitro and in vivo. Clinical cancer samples data revealed that DCTPP1 was a novel target associated with poor survival in CRC. DCTPP1 was also identified as a new target protein of 2. Mechanistically, compound 2 bound to DCTPP1, inhibited its enzymatic activity, intervened with amino acid metabolic reprogramming, and exerted anti‐CRC activity. Our study demonstrates that DCTPP1 was a novel potential biomarker and therapeutic target in CRC, and 2 was the first natural anti‐CRC drug candidate targeting DCTPP1.
科研通智能强力驱动
Strongly Powered by AbleSci AI