COL3a simultaneously regulates flowering and branching to improve grain yield in soybean

生物 支化(高分子化学) 产量(工程) 粮食产量 农学 植物 材料科学 冶金 复合材料
作者
C. S. Gao,Jiafu Yuan,Jianwei Lü,Wei Ye,Jianyi Zhi,Yongli Li,Weiwei Li,Mingming Sun,Fanjiang Kong,Baohui Liu,Qun Cheng,Lidong Dong
出处
期刊:Plant Biotechnology Journal [Wiley]
被引量:1
标识
DOI:10.1111/pbi.14489
摘要

Soybean production in low-latitude regions is more than 50 per cent of the total worldwide production (United States Department of Agriculture, 2023). Therefore, it is very important to increase soybean yield in low-latitude regions. The branching number and flowering time are the major factors affecting soybean grain yield (Fang et al., 2024). Delaying flowering and maturity, and increasing the branch number can improve the final soybean yield by increasing the number of pods per plant (Dong et al., 2021; Sun et al., 2019). For example, the branch number was significantly increased and flowering time was delayed in the ap1 quadruple mutant and dt2 mutant, improving grain yield in soybean (Chen et al., 2020; Liang et al., 2022). Therefore, modulating the branch number and maturity are crucial for high-yield soybean breeding. However, only a few genes that regulating both branch number and flowering time have been identified. In total, 26 CONSTANS (CO) homologues have been identified in soybean, but only the functions of COL1a, COL1b, COL2a and COL2b have been reported (Wu et al., 2014). In this study, two independent T5-generations of transgenic soybean lines that homozygous COL3a-overexpressing (COL3a-OE) were obtained (Figure 1a,b), and used to examine the agronomic traits under natural short-day (SD) and long-day (LD) field conditions in Guangzhou and Shijiazhuang, respectively. The results showed that COL3a-OE transgenic lines flowered and matured significantly later than the wild-type Williams 82 (W82) in the field of Guangzhou (Figure 1c–e) and Shijiazhuang (Figure 1f,g). In addition, COL3a-OE transgenic lines exhibited significantly increased branch numbers and improved overall grain yields compared to that of wild-type W82 (Figure 1d–g). We generated loss-of-function mutants of COL3a (named col3aCR) on a W82 background using the CRISPR/Cas9-mediated gene editing (Figure S1a–c) to further investigate the function of COL3a. DNA sequencing identified a col3aCR mutant carrying a 76-bp nucleotide deletion between targets 1 and 2, and a frameshift mutation was introduced (Figure S1a–c). There was no significant difference between the col3aCR mutant and wild-type W82 under SD or LD conditions in the growth chamber (Figure S1d–g). We speculated that the functionally redundant of duplicated homologous genes are one of the main reasons why the col3aCR mutant has no phenotype. These results showed that the overexpression of COL3a significantly enhanced grain yield by increasing branch number and delaying maturity in soybean. The expression pattern of COL3a was firstly investigated in different soybean organs to understand the molecular mechanism of how COL3a regulate flowering and branching in soybeans. The results showed that COL3a was constitutively expressed in flowers, leaves, stems, roots and shoot apexes, but it was highly expressed in the leaves (Figure S2a). The subcellular localization of the COL3a protein was also determined in Arabidopsis protoplasts. We found that the COL3a-GFP fusion protein was located in the nucleus, whereas the GFP control was located primarily in the nucleus and cytoplasm (Figure S2b). Previous studies have shown that the legume-specific E1 gene plays a central role in photoperiod-regulated flowering and maturity (Xia et al., 2012) by regulating the expression of FT2a and FT5a genes in soybean. We first investigated E1 expression in COL3a-OE and W82 soybean plants to test whether COL3a can regulate the expression of E1. The transcription level of E1 was higher in the COL3a-OE than in W82 plants (Figure 1h), and FT2a and FT5a expression levels were lower in COL3a-OE plants than in W82 plants (Figure S3a,b). Transient expression assays also showed that COL3a induced the expression of the pE1::LUC reporter gene (Figure 1i). Chromatin immunoprecipitation (ChIP)-qPCR revealed that COL3a was directly associated with the E1 promoter regions containing a core-like-motif (CCACA, Figure 1j). We crossed COL3a-OE2 with e1CR mutant in W82 background to develop COL3a-OE2/e1CR lines and subjected them to phenotypic evaluation to further explore the genetic interaction of COL3a and E1. The COL3a-OE2 plants showed delayed flowering in both the e1as and e1CR genetic backgrounds; however, the effect was weaker in the e1CR background, implying that the full effect of COL3a on flowering mainly depends on E1 (Figure 1k). These results combined indicated that COL3a directly binds to the promoter of E1 and activates its expression. Notably, this is the first gene to be identified that directly activates E1 expression in soybeans. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors play a critical role in regulating the number of soybean branches (Bao et al., 2019; Sun et al., 2019). We performed RT-qPCR assay on COL3a-OE2 and W82 soybean plants to test whether COL3a can regulate expression SPL genes to control branch number in soybean shoot apex. The results showed that a large number of SPL genes were down-regulated in COL3a-OE2 transgenic soybean plants compared to wild-type W82 (Figure 1l), including SPL9a and SPL9b, which have been confirmed to increase branching in soybeans (Bao et al., 2019). The natural variation of the COL3a coding sequence was analysed in 617 previously resequenced soybean accessions, including 177 wild, 28 landrace and 412 cultivar soybeans (Dong et al., 2022; Kou et al., 2022) to explore the evolutionary origin of the different alleles in COL3a. Two unique, high-confidence haplotypes were identified in COL3a gene. The 6-bp deletion in haplotype 2 (COL3aH2) was identical to that of all other COL3 homologues in legumes, suggesting that COL3aH2 is the original haplotype in soybean (Figure 1m,n). A dual-luciferase transient expression assay showed that COL3aH2 has a stronger ability to activate the expression of E1 than COL3aH1 (Figure S4). Varieties carrying COL3aH2 showed delayed flowering compared to that of COL3aH1 (Figure 1o,p). Next, we examined the percentages of the different alleles in the improved cultivars, landraces and wild soybeans in our panel of 617 resequenced accessions. The COL3aH1 allele was present in 43.7% of the wild soybeans, whereas COL3aH2 was present in 56.3%, indicating that the COL3aH2 allele is a major genetic variant in wild soybeans (Figure 1m). The frequency of COL3aH1 increased to 96.4% and 99.8% in the landraces and cultivars, respectively, suggesting that COL3aH1 have been underwent strong artificial selection during post-domestication (Figure 1m). We further identified strong evidence of selection in a region of 108 kb that contains COL3a gene and 17 other genes (Figure 1p and Table S1). These results suggested that the COL3aH1 allele is targeted by selection, thereby causing its rapid accumulation in domesticated soybeans. In conclusion, we identified that the COL3a gene play a key role in regulating maturity and branch number to control grain yield in soybean and that the earlier flowering alleles of COL3aHI have undergone artificial selection in modern cultivar soybean in high-latitude regions. Our findings also provide a biotechnological strategy for introducing COL3aH2 allele into modern soybean to create high-yielding soybean in low latitude by delaying flowering and increasing branch number. This work was supported by National Natural Science Foundation of China (grant nos. 31930083 to B.L), Science Fund for Distinguished Young Scholar of Guangdong Province (grant nos. 2023B1515020063), National Natural Science Foundation of China (grant nos. 32330074 to B.L, 32090065 to L.D. and 32272073 to Q.C.). The authors declare that they have no competing interests. LD and QC designed the research; CG, JL, WY, JZ, JY, YL and WL performed the experiments; MS, FK, LD and QC performed data analyses; LD and BH wrote the manuscript. Data sharing is not applicable to this article as no new data were created or analyzed in this study. Figure S1 (a) The target site for gene editing. Figure S2 COL3a gene expression and protein localization. Figure S3 Diurnal variation in transcript levels of FT2a and FT5a in COL3a-OE and W82 plants under SD conditions (12 h light/12 h dark) in growth chamber. Figure S4 Transient dual luciferase (dual-LUC) assay of COL3aH1 and COL3aH2 on the promoter of E1 in Arabidopsis protoplasts. Table S1 Gene list in 108kb selection regions. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
provin发布了新的文献求助10
1秒前
芋泥啵啵完成签到,获得积分10
4秒前
5秒前
qwe完成签到 ,获得积分10
5秒前
9秒前
hcw发布了新的文献求助10
10秒前
10秒前
kk应助红甲采纳,获得10
11秒前
大模型应助红甲采纳,获得10
11秒前
11秒前
任鲂完成签到,获得积分20
11秒前
11秒前
13秒前
axl发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
ZSH发布了新的文献求助10
15秒前
汉堡包应助1111sss采纳,获得10
16秒前
坦率尔琴发布了新的文献求助10
17秒前
addd发布了新的文献求助10
17秒前
17秒前
雪顶蛋糕发布了新的文献求助10
17秒前
17秒前
SCI完成签到,获得积分10
17秒前
18秒前
朱正家关注了科研通微信公众号
18秒前
123发布了新的文献求助30
19秒前
Gumiano发布了新的文献求助10
20秒前
lyn完成签到,获得积分10
21秒前
22秒前
ljq发布了新的文献求助10
22秒前
ljh123456发布了新的文献求助10
22秒前
shirley发布了新的文献求助30
23秒前
小研同学完成签到,获得积分10
24秒前
科研通AI2S应助axl采纳,获得10
24秒前
脑洞疼应助morgenlefay采纳,获得10
26秒前
化学元素应助肖肖恩采纳,获得10
27秒前
李朋发布了新的文献求助10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952555
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089696
捐赠科研通 3228463
什么是DOI,文献DOI怎么找? 1784978
邀请新用户注册赠送积分活动 869059
科研通“疑难数据库(出版商)”最低求助积分说明 801309