Node Reporting and Data System Combined With Computed Tomography Radiomics Can Improve the Prediction of Nonenlarged Lymph Node Metastasis in Gastric Cancer

医学 无线电技术 接收机工作特性 淋巴结 放射科 癌症 核医学 病理 内科学
作者
Changqin Jiang,Wei Fang,Na Wei,Winston Ma,Cong Dai,Ruixue Liu,Andrew Cai,Qiang Feng
出处
期刊:Journal of Computer Assisted Tomography [Lippincott Williams & Wilkins]
被引量:3
标识
DOI:10.1097/rct.0000000000001673
摘要

Objectives To investigate the diagnostic performance of Node Reporting and Data System (Node-RADS) combined with computed tomography (CT) radiomics for assessing nonenlargement regional lymph nodes in gastric cancer (GC). Methods Preoperative CT images were retrospectively collected from 376 pathologically confirmed of gastric adenocarcinoma from January 2019 to December 2023, with 605 lymph nodes included for analysis. They were divided into training (n = 362) and validation (n = 243) sets. Radiomics features were extracted from venous-phase, and the radiomics score was obtained. Clinical information, CT parameters, and Node-RADS classification were collected. A combined model was built using machine-learning approach and tested in validation set using receiver operating characteristic curve analysis. Further validation was conducted in different subgroups of lymph node short-axis diameter (SD) range. Results Node-RADS score, SD, maximum diameter of thickness of tumor, and radiomics were identified as the most predictive factors. The results demonstrated that the integrated model combining SD, maximum diameter of thickness of tumor, Node-RADS, and radiomics outperformed the model excluding radiomics, yielding an area under the receiver operating characteristic curve of 0.82 compared with 0.79, with a statistically significant difference ( P < 0.001). Subgroup analysis based on different SDs of lymph nodes also revealed enhanced diagnostic accuracy when incorporating the radiomics score for the 4- to 7.9-mm subgroups, all P < 0.05. However, for the 8- to 9.9-mm subgroup, the combination of the radiomics did not significantly improve the prediction, with an area under the receiver operating characteristic curve of 0.85 versus 0.85, P = 0.877. Conclusion The integration of radiomics scores with Node-RADS assessments significantly enhances the accuracy of lymph node metastasis evaluation for GC. This combined model is particularly effective for lymph nodes with smaller standard deviations, yielding a marked improvement in diagnostic precision. Clinical Relevance Statement The findings of this study indicate that a composite model, which incorporates Node-RADS, radiomics features, and conventional parameters, may serve as an effective method for the assessment of nonenlarged lymph nodes in GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一人独钓一江秋完成签到,获得积分10
1秒前
3秒前
4秒前
干雅柏发布了新的文献求助10
6秒前
搜集达人应助俏皮芷蕊采纳,获得10
8秒前
上官若男应助sugar采纳,获得10
9秒前
xxxllllll发布了新的文献求助30
9秒前
9秒前
CodeCraft应助wangqiuhong采纳,获得10
10秒前
12秒前
桐桐应助jszhoucl采纳,获得10
12秒前
黄健斌完成签到,获得积分10
13秒前
HarryChan完成签到,获得积分10
15秒前
18秒前
19秒前
19秒前
华仔应助小绵羊采纳,获得10
21秒前
Andema发布了新的文献求助10
22秒前
俏皮芷蕊发布了新的文献求助10
23秒前
24秒前
xiao_niu完成签到,获得积分10
24秒前
liu发布了新的文献求助10
25秒前
大模型应助墨水采纳,获得10
26秒前
cc完成签到,获得积分10
26秒前
Jackson完成签到,获得积分10
26秒前
852应助李茵采纳,获得10
27秒前
郭富城发布了新的文献求助10
27秒前
28秒前
量子星尘发布了新的文献求助10
32秒前
32秒前
Andema完成签到,获得积分10
33秒前
33秒前
老大蒂亚戈应助俏皮芷蕊采纳,获得10
33秒前
搜集达人应助木可采纳,获得10
36秒前
orixero应助wangjue采纳,获得10
37秒前
38秒前
liu完成签到,获得积分10
38秒前
Villanellel发布了新的文献求助50
39秒前
YJ888发布了新的文献求助10
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174