Observation vector reconstruction-based nonparametric nonlinear restoring force identification for granules-structures coupled vibrating system

恢复力 非线性系统 鉴定(生物学) 非参数统计 控制理论(社会学) 系统标识 生物系统 支持向量机 数学 计算机科学 物理 工程类 结构工程 人工智能 数据挖掘 生物 统计 量子力学 植物 控制(管理) 度量(数据仓库)
作者
Jinlu Dong,Jian Li,Guangyang Hong,Hang Li,Ning Yang
出处
期刊:Journal of Vibration and Control [SAGE]
标识
DOI:10.1177/10775463241260898
摘要

The nonlinear restoring force (NRF) generated by the collision and friction between particles and structures is the leading cause of the complex dynamic response of the granules-structures coupled vibrating system (GSCVS). Identification of NRF can provide critical information for post-event damage diagnosis and structural design of immersed structures. However, the spatial distribution and dynamic response of the particles near the structures are diverse and complex, making it difficult to describe the NRF with an accurate mathematical model. This paper proposed a data-based nonparametric method to estimate the NRF in the GSCVS. A nonparametric model of NRF that considered the additional effects of particles on both sides of the structures and consisted of system response and undetermined coefficients was developed. The observation vector of the conventional Extended Kalman Filter (EKF) was reconstructed by the sparse measurement of the strain response. The reconstructed observation vector contains three response components: translational displacement, translational acceleration, and rotational acceleration, in which the rotational acceleration response is difficult to measure in engineering applications. The proposed EKF based on observation vector reconstruction (EKF-OVR) can identify the undetermined coefficients in the nonparametric model, and then the NRF can be calculated. Numerical studies showed that EKF-OVR achieved higher accuracy and noise robustness than the conventional EKF and the data fusion based EKF. A dynamic experimental study on granules-beam coupled vibrating system (GBCVS) was conducted, and the proposed algorithm was employed to identify the NRF of the GBCVS. The effects of excitation amplitude, particle size, and immersed depth on NRF are analyzed, and it is found that higher harmonic components in the NRF led to period doubling and chaos of the beam response.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CHEN完成签到 ,获得积分10
1秒前
嗨嗨嗨发布了新的文献求助10
1秒前
蛋筒完成签到,获得积分10
2秒前
Terry应助化学小学生采纳,获得10
2秒前
daoketuo完成签到,获得积分10
2秒前
倪鱼发布了新的文献求助30
2秒前
CipherSage应助Plutus采纳,获得10
3秒前
xiaoli发布了新的文献求助10
3秒前
清脆觅珍完成签到,获得积分10
4秒前
无花果应助Ma采纳,获得10
4秒前
醒醒完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
科研助理发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
Owen应助不劳而获采纳,获得10
7秒前
还好还好完成签到,获得积分10
8秒前
8秒前
8秒前
Enko发布了新的文献求助200
9秒前
11秒前
12发布了新的文献求助10
11秒前
12秒前
ZWL完成签到,获得积分10
12秒前
12秒前
chunyeliangchuan完成签到,获得积分10
14秒前
凡凡发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
李禾和完成签到,获得积分10
15秒前
15秒前
Hello应助lulu采纳,获得10
15秒前
曹小妍发布了新的文献求助10
16秒前
无限盼晴完成签到 ,获得积分10
17秒前
17秒前
活力海云完成签到,获得积分10
17秒前
Orange应助无心的善愁采纳,获得10
18秒前
After应助絮林采纳,获得10
18秒前
19秒前
wuwu完成签到,获得积分20
19秒前
彭于晏应助威武飞双采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769758
求助须知:如何正确求助?哪些是违规求助? 5581454
关于积分的说明 15422558
捐赠科研通 4903392
什么是DOI,文献DOI怎么找? 2638203
邀请新用户注册赠送积分活动 1586098
关于科研通互助平台的介绍 1541186