Observation vector reconstruction-based nonparametric nonlinear restoring force identification for granules-structures coupled vibrating system

恢复力 非线性系统 鉴定(生物学) 非参数统计 控制理论(社会学) 系统标识 生物系统 支持向量机 数学 计算机科学 物理 工程类 结构工程 人工智能 数据挖掘 生物 统计 量子力学 植物 控制(管理) 度量(数据仓库)
作者
Jinlu Dong,Jian Li,Guangyang Hong,Hang Li,Ning Yang
出处
期刊:Journal of Vibration and Control [SAGE]
标识
DOI:10.1177/10775463241260898
摘要

The nonlinear restoring force (NRF) generated by the collision and friction between particles and structures is the leading cause of the complex dynamic response of the granules-structures coupled vibrating system (GSCVS). Identification of NRF can provide critical information for post-event damage diagnosis and structural design of immersed structures. However, the spatial distribution and dynamic response of the particles near the structures are diverse and complex, making it difficult to describe the NRF with an accurate mathematical model. This paper proposed a data-based nonparametric method to estimate the NRF in the GSCVS. A nonparametric model of NRF that considered the additional effects of particles on both sides of the structures and consisted of system response and undetermined coefficients was developed. The observation vector of the conventional Extended Kalman Filter (EKF) was reconstructed by the sparse measurement of the strain response. The reconstructed observation vector contains three response components: translational displacement, translational acceleration, and rotational acceleration, in which the rotational acceleration response is difficult to measure in engineering applications. The proposed EKF based on observation vector reconstruction (EKF-OVR) can identify the undetermined coefficients in the nonparametric model, and then the NRF can be calculated. Numerical studies showed that EKF-OVR achieved higher accuracy and noise robustness than the conventional EKF and the data fusion based EKF. A dynamic experimental study on granules-beam coupled vibrating system (GBCVS) was conducted, and the proposed algorithm was employed to identify the NRF of the GBCVS. The effects of excitation amplitude, particle size, and immersed depth on NRF are analyzed, and it is found that higher harmonic components in the NRF led to period doubling and chaos of the beam response.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
辉辉应助spc采纳,获得20
3秒前
jxf发布了新的文献求助10
4秒前
坚果完成签到,获得积分10
5秒前
月亮完成签到,获得积分10
7秒前
auguster发布了新的文献求助220
8秒前
9秒前
Lucas应助小正采纳,获得10
9秒前
kiguf完成签到,获得积分10
9秒前
10秒前
flac完成签到,获得积分10
11秒前
JamesPei应助火星上的大开采纳,获得10
11秒前
pluto应助吧啦吧啦采纳,获得10
11秒前
西因应助ky采纳,获得10
13秒前
加油发布了新的文献求助10
14秒前
14秒前
搜集达人应助唠叨的板栗采纳,获得10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
大模型应助pepsisery采纳,获得10
16秒前
传奇3应助热情剑采纳,获得10
17秒前
张雅露完成签到,获得积分10
17秒前
Piana完成签到 ,获得积分10
17秒前
偷懒会被吃掉的完成签到,获得积分10
19秒前
¥#¥-11完成签到,获得积分10
20秒前
Ethan完成签到,获得积分10
21秒前
zedhumble完成签到,获得积分10
21秒前
spzdss完成签到,获得积分10
21秒前
炸炸呦发布了新的文献求助10
22秒前
NexusExplorer应助科研通管家采纳,获得10
22秒前
大模型应助科研通管家采纳,获得10
22秒前
彭于晏应助科研通管家采纳,获得10
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
一个西藏发布了新的文献求助10
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
后来应助科研通管家采纳,获得90
22秒前
蓝天应助科研通管家采纳,获得10
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602550
求助须知:如何正确求助?哪些是违规求助? 4687631
关于积分的说明 14850395
捐赠科研通 4684393
什么是DOI,文献DOI怎么找? 2539962
邀请新用户注册赠送积分活动 1506645
关于科研通互助平台的介绍 1471428