Observation vector reconstruction-based nonparametric nonlinear restoring force identification for granules-structures coupled vibrating system

恢复力 非线性系统 鉴定(生物学) 非参数统计 控制理论(社会学) 系统标识 生物系统 支持向量机 数学 计算机科学 物理 工程类 结构工程 人工智能 数据挖掘 生物 统计 量子力学 植物 控制(管理) 度量(数据仓库)
作者
Jinlu Dong,Jian Li,Guangyang Hong,Hang Li,Ning Yang
出处
期刊:Journal of Vibration and Control [SAGE Publishing]
标识
DOI:10.1177/10775463241260898
摘要

The nonlinear restoring force (NRF) generated by the collision and friction between particles and structures is the leading cause of the complex dynamic response of the granules-structures coupled vibrating system (GSCVS). Identification of NRF can provide critical information for post-event damage diagnosis and structural design of immersed structures. However, the spatial distribution and dynamic response of the particles near the structures are diverse and complex, making it difficult to describe the NRF with an accurate mathematical model. This paper proposed a data-based nonparametric method to estimate the NRF in the GSCVS. A nonparametric model of NRF that considered the additional effects of particles on both sides of the structures and consisted of system response and undetermined coefficients was developed. The observation vector of the conventional Extended Kalman Filter (EKF) was reconstructed by the sparse measurement of the strain response. The reconstructed observation vector contains three response components: translational displacement, translational acceleration, and rotational acceleration, in which the rotational acceleration response is difficult to measure in engineering applications. The proposed EKF based on observation vector reconstruction (EKF-OVR) can identify the undetermined coefficients in the nonparametric model, and then the NRF can be calculated. Numerical studies showed that EKF-OVR achieved higher accuracy and noise robustness than the conventional EKF and the data fusion based EKF. A dynamic experimental study on granules-beam coupled vibrating system (GBCVS) was conducted, and the proposed algorithm was employed to identify the NRF of the GBCVS. The effects of excitation amplitude, particle size, and immersed depth on NRF are analyzed, and it is found that higher harmonic components in the NRF led to period doubling and chaos of the beam response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoyan发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
lplplp发布了新的文献求助10
3秒前
3秒前
王博士发布了新的文献求助30
4秒前
4秒前
sjsjjj发布了新的文献求助10
4秒前
hhhhhheeeeee发布了新的文献求助20
5秒前
shijin发布了新的文献求助10
5秒前
诚心巧凡完成签到 ,获得积分20
5秒前
淡定美女完成签到 ,获得积分10
6秒前
典雅冰香发布了新的文献求助10
7秒前
LXJY发布了新的文献求助10
8秒前
星辰大海应助何海采纳,获得10
9秒前
8R60d8应助杨洋采纳,获得20
9秒前
9秒前
行歌发布了新的文献求助10
9秒前
wind完成签到,获得积分10
10秒前
liang完成签到,获得积分10
10秒前
记得吃早饭完成签到 ,获得积分10
11秒前
坤坤发布了新的文献求助10
14秒前
wind发布了新的文献求助10
14秒前
15秒前
Azed完成签到,获得积分20
15秒前
16秒前
16秒前
行歌完成签到,获得积分10
17秒前
hhhhhheeeeee完成签到,获得积分10
17秒前
wanci应助yixuan采纳,获得10
19秒前
liang发布了新的文献求助10
19秒前
19秒前
星辰完成签到,获得积分10
19秒前
小盛完成签到 ,获得积分10
20秒前
Gasoline.发布了新的文献求助10
20秒前
科研通AI6应助风中垣采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252271
求助须知:如何正确求助?哪些是违规求助? 4416124
关于积分的说明 13748660
捐赠科研通 4288014
什么是DOI,文献DOI怎么找? 2352722
邀请新用户注册赠送积分活动 1349497
关于科研通互助平台的介绍 1309009