Predicting and refining acid modifications of biochar based on machine learning and bibliometric analysis: Specific surface area, average pore size, and total pore volume

生物炭 精炼(冶金) 体积热力学 曲面(拓扑) 环境科学 化学工程 材料科学 数学 工程类 冶金 热力学 热解 物理 几何学
作者
Fangzhou Zhao,Lingyi Tang,Wenjing Song,Hanfeng Jiang,Yiping Liu,Haoming Chen
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:948: 174584-174584 被引量:18
标识
DOI:10.1016/j.scitotenv.2024.174584
摘要

Acid-modified biochar is a modified biochar material with convenient preparation, high specific surface area, and rich pore structure. It has great potential for application in the heavy metal remediation, soil amendments, and carrying catalysts. Specific surface area (SSA), average pore size (APS), and total pore volume (TPV) are the key properties that determine its adsorption capacity, reactivity, and water holding capacity, and an intensive study of these properties is essential to optimize the performance of biochar. But the complex interactions among the preparation conditions obstruct finding the optimal modification strategy. This study collected dataset through bibliometric analysis and used four typical machine learning models to predict the SSA, APS, and TPV of acid-modified biochar. The results showed that the extreme gradient boosting (XGB) was optimal for the test results (SSA R2 = 0.92, APS R2 = 0.87, TPV R2 = 0.96). The model interpretation revealed that the modification conditions were the major factors affecting SSA and TPV, and the pyrolysis conditions were the major factors affecting APS. Based on the XGB model, the modification conditions of biochar were optimized, which revealed the ideal preparation conditions for producing the optimal biochar (SSA = 727.02 m2/g, APS = 5.34 nm, TPV = 0.68 cm3/g). Moreover, the biochar produced under specific conditions verified the generalization ability of the XGB model (R2 = 0.99, RMSE = 12.355). This study provides guidance for optimizing the preparation strategy of acid-modified biochar and promotes its potentiality for industrial application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咿呀发布了新的文献求助10
刚刚
1秒前
1秒前
kk发布了新的文献求助10
1秒前
2秒前
心灵美绝施完成签到 ,获得积分10
2秒前
悦耳的念烟完成签到,获得积分20
3秒前
3秒前
3秒前
yuan发布了新的文献求助10
4秒前
在水一方应助沉静的傲柏采纳,获得10
4秒前
落叶发布了新的文献求助30
4秒前
love发布了新的文献求助10
4秒前
两袖清风发布了新的文献求助10
4秒前
在水一方应助pinecone采纳,获得10
5秒前
KK完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
研友_VZG7GZ应助着急的书本采纳,获得10
6秒前
yy发布了新的文献求助10
6秒前
6秒前
7秒前
超级翠桃完成签到,获得积分10
8秒前
ly发布了新的文献求助10
8秒前
9秒前
Akim应助清脆安南采纳,获得10
9秒前
冰淇淋灭火器完成签到,获得积分10
9秒前
9秒前
10秒前
西西发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
11秒前
zhuvivi发布了新的文献求助10
12秒前
12秒前
12秒前
shine发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642218
求助须知:如何正确求助?哪些是违规求助? 4758455
关于积分的说明 15016860
捐赠科研通 4800783
什么是DOI,文献DOI怎么找? 2566211
邀请新用户注册赠送积分活动 1524307
关于科研通互助平台的介绍 1483909