Predicting and refining acid modifications of biochar based on machine learning and bibliometric analysis: Specific surface area, average pore size, and total pore volume

生物炭 精炼(冶金) 体积热力学 曲面(拓扑) 环境科学 化学工程 材料科学 数学 工程类 冶金 热力学 热解 物理 几何学
作者
Fangzhou Zhao,Lingyi Tang,Wenjing Song,Hanfeng Jiang,Yiping Liu,Haoming Chen
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:948: 174584-174584 被引量:1
标识
DOI:10.1016/j.scitotenv.2024.174584
摘要

Acid-modified biochar is a modified biochar material with convenient preparation, high specific surface area, and rich pore structure. It has great potential for application in the heavy metal remediation, soil amendments, and carrying catalysts. Specific surface area (SSA), average pore size (APS), and total pore volume (TPV) are the key properties that determine its adsorption capacity, reactivity, and water holding capacity, and an intensive study of these properties is essential to optimize the performance of biochar. But the complex interactions among the preparation conditions obstruct finding the optimal modification strategy. This study collected dataset through bibliometric analysis and used four typical machine learning models to predict the SSA, APS, and TPV of acid-modified biochar. The results showed that the extreme gradient boosting (XGB) was optimal for the test results (SSA R2 = 0.92, APS R2 = 0.87, TPV R2 = 0.96). The model interpretation revealed that the modification conditions were the major factors affecting SSA and TPV, and the pyrolysis conditions were the major factors affecting APS. Based on the XGB model, the modification conditions of biochar were optimized, which revealed the ideal preparation conditions for producing the optimal biochar (SSA = 727.02 m2/g, APS = 5.34 nm, TPV = 0.68 cm3/g). Moreover, the biochar produced under specific conditions verified the generalization ability of the XGB model (R2 = 0.99, RMSE = 12.355). This study provides guidance for optimizing the preparation strategy of acid-modified biochar and promotes its potentiality for industrial application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尔尔发布了新的文献求助10
2秒前
3秒前
Mengqi完成签到,获得积分10
4秒前
felix发布了新的文献求助10
4秒前
shuitian998发布了新的文献求助10
4秒前
疯狂的松鼠关注了科研通微信公众号
6秒前
CCCzzq完成签到,获得积分10
6秒前
7秒前
FashionBoy应助平常的傲白采纳,获得10
7秒前
9秒前
qi发布了新的文献求助20
9秒前
kenna123发布了新的文献求助80
10秒前
婷婷应助笑点低的牛二采纳,获得10
11秒前
11秒前
荀誉发布了新的文献求助20
11秒前
12秒前
Sacchride发布了新的文献求助20
14秒前
小云完成签到,获得积分10
14秒前
徐若楠发布了新的文献求助10
15秒前
小张z完成签到,获得积分10
19秒前
zhangzhenfei完成签到,获得积分10
20秒前
yaofully应助徐若楠采纳,获得20
22秒前
科研小废物完成签到 ,获得积分10
23秒前
深情安青应助飘落采纳,获得10
23秒前
23秒前
天天快乐应助zhangzhenfei采纳,获得10
24秒前
Cynthia42完成签到 ,获得积分10
24秒前
25秒前
Eric发布了新的文献求助20
26秒前
30秒前
尔尔完成签到,获得积分10
31秒前
科研通AI2S应助研友_8op5gL采纳,获得10
32秒前
Lucas应助阔阔采纳,获得10
34秒前
小城楠发布了新的文献求助10
35秒前
qi完成签到,获得积分10
36秒前
含蓄的荔枝完成签到,获得积分10
39秒前
深情安青应助晚秋采纳,获得10
39秒前
40秒前
41秒前
41秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164126
求助须知:如何正确求助?哪些是违规求助? 2814837
关于积分的说明 7906792
捐赠科研通 2474446
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631818
版权声明 602228