Predicting and refining acid modifications of biochar based on machine learning and bibliometric analysis: Specific surface area, average pore size, and total pore volume

生物炭 精炼(冶金) 体积热力学 曲面(拓扑) 环境科学 化学工程 材料科学 数学 工程类 冶金 热力学 热解 物理 几何学
作者
Fangzhou Zhao,Lingyi Tang,Wenjing Song,Hanfeng Jiang,Yiping Liu,Haoming Chen
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:948: 174584-174584 被引量:18
标识
DOI:10.1016/j.scitotenv.2024.174584
摘要

Acid-modified biochar is a modified biochar material with convenient preparation, high specific surface area, and rich pore structure. It has great potential for application in the heavy metal remediation, soil amendments, and carrying catalysts. Specific surface area (SSA), average pore size (APS), and total pore volume (TPV) are the key properties that determine its adsorption capacity, reactivity, and water holding capacity, and an intensive study of these properties is essential to optimize the performance of biochar. But the complex interactions among the preparation conditions obstruct finding the optimal modification strategy. This study collected dataset through bibliometric analysis and used four typical machine learning models to predict the SSA, APS, and TPV of acid-modified biochar. The results showed that the extreme gradient boosting (XGB) was optimal for the test results (SSA R2 = 0.92, APS R2 = 0.87, TPV R2 = 0.96). The model interpretation revealed that the modification conditions were the major factors affecting SSA and TPV, and the pyrolysis conditions were the major factors affecting APS. Based on the XGB model, the modification conditions of biochar were optimized, which revealed the ideal preparation conditions for producing the optimal biochar (SSA = 727.02 m2/g, APS = 5.34 nm, TPV = 0.68 cm3/g). Moreover, the biochar produced under specific conditions verified the generalization ability of the XGB model (R2 = 0.99, RMSE = 12.355). This study provides guidance for optimizing the preparation strategy of acid-modified biochar and promotes its potentiality for industrial application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壹贰叁肆发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
2秒前
dejavu发布了新的文献求助10
3秒前
3秒前
5秒前
桃七发布了新的文献求助10
5秒前
cactus完成签到 ,获得积分10
5秒前
5秒前
Yimi发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
李里哩发布了新的文献求助10
9秒前
涯光完成签到,获得积分10
9秒前
10秒前
小蘑菇发布了新的文献求助10
11秒前
12秒前
12秒前
oyasimi发布了新的文献求助10
12秒前
12秒前
司空雨筠完成签到,获得积分10
13秒前
13秒前
冷静蜗牛完成签到,获得积分10
14秒前
hrpppp发布了新的文献求助50
14秒前
14秒前
LHTTT发布了新的文献求助10
15秒前
大气的苠发布了新的文献求助10
15秒前
小马甲应助陳.采纳,获得10
16秒前
于豪杰发布了新的文献求助10
17秒前
oyasimi完成签到,获得积分10
17秒前
满意紫丝发布了新的文献求助10
17秒前
17秒前
冯前浪发布了新的文献求助10
18秒前
汉堡包应助Yimi采纳,获得10
18秒前
格拉a发布了新的文献求助10
19秒前
田様应助周繁采纳,获得10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694691
求助须知:如何正确求助?哪些是违规求助? 5098273
关于积分的说明 15214299
捐赠科研通 4851210
什么是DOI,文献DOI怎么找? 2602193
邀请新用户注册赠送积分活动 1554073
关于科研通互助平台的介绍 1511978