Estimating and Predicting the Rate of Kidney Function Decline over 10 years in the General Population

肾功能 医学 均方误差 统计 数学 标准差 人口 线性回归 接收机工作特性 标准误差 人口学 内科学 环境卫生 社会学
作者
Masao Iwagami,Kazunori Odani,Tomoki Saito
出处
期刊:Kidney360 [American Society of Nephrology (ASN)]
标识
DOI:10.34067/kid.0000000608
摘要

Background: We aimed to estimate the rate of kidney function decline over 10 years in the general population and develop a machine learning model to predict it. Methods: We used the JMDC database from 2012 to 2021, which includes company employees and their family members in Japan, where annual health checks are mandated for people aged 40–74 years. We estimated the slope (average change) of estimated glomerular filtration rate (eGFR) over a period of 10 years. Then, using the annual health-check results and prescription claims for the first five years from 2012 to 2016 as predictor variables, we developed an XGBoost model, evaluated its prediction performance with the root mean squared error (RMSE), R 2 , and area under the receiver operating characteristic curve (AUROC) for rapid decliners (defined as the slope <-3 ml/min/1.73 m 2 /year) using 5-fold cross validation, and compared these indicators with those of (i) the simple application of the eGFR slope from 2012 to 2016 and (ii) the adjusted linear regression model. Results: We included 126,424 individuals (mean age, 45.2 years; male, 82.4%; mean eGFR, 79.0 ml/min/1.73 m 2 in 2016). The mean slope was -0.89 (standard deviation, 0.96) ml/min/1.73 m 2 /year. The predictive performance of the XGBoost model (RMSE, 0.78; R 2 , 0.35; and AUROC, 0.89) was better than that of either the simple application of the eGFR slope from 2012 to 2016 (RMSE, 1.94; R 2 , -3.03; and AUROC, 0.79) or the adjusted linear regression model (RMSE, 0.81; R 2 , 0.30; and AUROC, 0.87). Conclusions: We estimated the rate of kidney function decline over 10 years in the general population as well as demonstrated that application of machine learning to annual health-check and claims data provides better predictive performance compared to traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小疙瘩发布了新的文献求助10
刚刚
1秒前
metalmd发布了新的文献求助10
1秒前
1秒前
学术蠕虫发布了新的文献求助10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
sutharsons应助科研通管家采纳,获得30
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
XShu发布了新的文献求助10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得30
4秒前
传奇3应助科研通管家采纳,获得30
4秒前
Owen应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
文艺明杰发布了新的文献求助100
6秒前
所所应助嘟嘟采纳,获得10
6秒前
8秒前
HMZ完成签到,获得积分10
8秒前
研友_LkYKJZ完成签到,获得积分10
8秒前
田様应助Khr1stINK采纳,获得10
8秒前
8秒前
风趣夜云完成签到,获得积分10
9秒前
9秒前
真实的一鸣完成签到,获得积分10
9秒前
调研昵称发布了新的文献求助50
10秒前
11秒前
yKkkkkk发布了新的文献求助10
11秒前
怎么可能会凉完成签到 ,获得积分10
12秒前
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808