Estimating and Predicting the Rate of Kidney Function Decline over 10 years in the General Population

肾功能 医学 均方误差 统计 数学 标准差 人口 线性回归 接收机工作特性 标准误差 人口学 内科学 环境卫生 社会学
作者
Masao Iwagami,Kazunori Odani,Tomoki Saito
出处
期刊:Kidney360 [American Society of Nephrology (ASN)]
标识
DOI:10.34067/kid.0000000608
摘要

Background: We aimed to estimate the rate of kidney function decline over 10 years in the general population and develop a machine learning model to predict it. Methods: We used the JMDC database from 2012 to 2021, which includes company employees and their family members in Japan, where annual health checks are mandated for people aged 40–74 years. We estimated the slope (average change) of estimated glomerular filtration rate (eGFR) over a period of 10 years. Then, using the annual health-check results and prescription claims for the first five years from 2012 to 2016 as predictor variables, we developed an XGBoost model, evaluated its prediction performance with the root mean squared error (RMSE), R 2 , and area under the receiver operating characteristic curve (AUROC) for rapid decliners (defined as the slope <-3 ml/min/1.73 m 2 /year) using 5-fold cross validation, and compared these indicators with those of (i) the simple application of the eGFR slope from 2012 to 2016 and (ii) the adjusted linear regression model. Results: We included 126,424 individuals (mean age, 45.2 years; male, 82.4%; mean eGFR, 79.0 ml/min/1.73 m 2 in 2016). The mean slope was -0.89 (standard deviation, 0.96) ml/min/1.73 m 2 /year. The predictive performance of the XGBoost model (RMSE, 0.78; R 2 , 0.35; and AUROC, 0.89) was better than that of either the simple application of the eGFR slope from 2012 to 2016 (RMSE, 1.94; R 2 , -3.03; and AUROC, 0.79) or the adjusted linear regression model (RMSE, 0.81; R 2 , 0.30; and AUROC, 0.87). Conclusions: We estimated the rate of kidney function decline over 10 years in the general population as well as demonstrated that application of machine learning to annual health-check and claims data provides better predictive performance compared to traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
muyixiao完成签到,获得积分20
1秒前
1秒前
1秒前
赘婿应助wisliudj采纳,获得10
1秒前
xf应助犹豫觅露采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
Llawite发布了新的文献求助10
4秒前
5秒前
酷波er应助那都通采纳,获得10
6秒前
fgfghijn完成签到,获得积分20
7秒前
7秒前
equalone完成签到,获得积分10
7秒前
健忘白易应助白子双采纳,获得10
7秒前
策策完成签到 ,获得积分10
8秒前
8秒前
8秒前
苏苏完成签到,获得积分10
9秒前
9秒前
paws发布了新的文献求助10
10秒前
结实烧鹅发布了新的文献求助10
10秒前
10秒前
10秒前
哈哈完成签到,获得积分10
11秒前
12秒前
taoduan2800发布了新的文献求助10
13秒前
威威发布了新的文献求助10
13秒前
13秒前
YHDing发布了新的文献求助10
14秒前
Dr_Sean发布了新的文献求助10
14秒前
15秒前
15秒前
阿泽完成签到,获得积分10
18秒前
外向香彤发布了新的文献求助10
18秒前
xpqiu发布了新的文献求助30
19秒前
LOTUS完成签到,获得积分10
19秒前
NexusExplorer应助seul采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4896145
求助须知:如何正确求助?哪些是违规求助? 4177840
关于积分的说明 12969394
捐赠科研通 3941069
什么是DOI,文献DOI怎么找? 2162084
邀请新用户注册赠送积分活动 1180518
关于科研通互助平台的介绍 1086076