已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Boosting machine learning algorithms for predicting the macroscopic material behavior of continuous fiber reinforced composite

材料科学 Boosting(机器学习) 复合数 复合材料 纤维 算法 机器学习 计算机科学
作者
Aiman Tariq,Ayşe Polat,Babür Deliktaş
出处
期刊:Journal of Reinforced Plastics and Composites [SAGE Publishing]
标识
DOI:10.1177/07316844241292694
摘要

Macroscopic mechanical properties of fibrous materials are often characterized by modeling their microscale behavior using micromechanical techniques. This process typically involves using a Representative Volume Element (RVE) and finite element simulations to obtain the macroscopic behavior through homogenization. However, these micromechanical simulations can be computationally demanding, especially for 3D models with discrete material microstructures. This paper uses boosting machine learning algorithms to predict the homogenized macroscopic material behavior of heterogeneous composites. These models are trained on the micromechanical simulation results generated by varying the constitutive parameters of local phases and microscopic parameters such as fiber volume fraction. The Bayesian optimization is used to determine the best hyperparameters of the considered boosting models, which include adaptive boosting (AdaB), gradient boosting (GBR), light gradient boosting (LGB), and extreme gradient boosting (XGB). The performances of trained models are assessed using various metrics such as R 2 , MAE, MAPE, and RMSE and using various plots such as scatter plots, Taylor plots, radar plots, and bar plots. The comparative assessment showed that all the models predicted the homogenized stiffness matrix of the RVE successfully, with R 2 values between 0.94 and 0.99. The XGB model presented the best overall performance. This work contributes to the field of composites by presenting a new and computationally efficient approach to predict the macroscopic behavior of RVEs using boosting models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助外向烤鸡采纳,获得10
1秒前
3秒前
MchemG完成签到,获得积分0
3秒前
琉璃929完成签到,获得积分10
3秒前
orixero应助房班采纳,获得10
3秒前
jacob258完成签到 ,获得积分10
5秒前
重要的笑晴完成签到,获得积分20
6秒前
小芭乐完成签到 ,获得积分10
8秒前
李李原上草完成签到 ,获得积分10
10秒前
沉夏谷完成签到,获得积分10
10秒前
10秒前
Boris完成签到 ,获得积分10
11秒前
holder完成签到,获得积分10
13秒前
13秒前
小张呢好发布了新的文献求助10
14秒前
14秒前
pupu完成签到 ,获得积分10
15秒前
空2完成签到 ,获得积分0
16秒前
LiuSD完成签到,获得积分10
17秒前
20秒前
所所应助香菜采纳,获得10
21秒前
齐桉完成签到 ,获得积分10
21秒前
NJD应助韩麒嘉采纳,获得10
22秒前
24秒前
葛怀锐完成签到 ,获得积分10
24秒前
25秒前
return完成签到,获得积分10
26秒前
26秒前
小张呢好完成签到,获得积分10
27秒前
丘比特应助LiuSD采纳,获得10
31秒前
扶光完成签到 ,获得积分10
31秒前
月下棋语完成签到 ,获得积分0
33秒前
发疯的乔治完成签到 ,获得积分10
35秒前
红毛兔完成签到 ,获得积分10
37秒前
oddope完成签到,获得积分10
37秒前
37秒前
39秒前
pcr163应助return采纳,获得100
39秒前
毛毛弟完成签到 ,获得积分10
41秒前
yangjoy完成签到 ,获得积分10
43秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
彭城银.延安时期中国共产党对外传播研究--以新华社为例[D].2024 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3655431
求助须知:如何正确求助?哪些是违规求助? 3218426
关于积分的说明 9724020
捐赠科研通 2926810
什么是DOI,文献DOI怎么找? 1602876
邀请新用户注册赠送积分活动 755841
科研通“疑难数据库(出版商)”最低求助积分说明 733509