Machine Learning Model for Screening Thyroid Stimulating Hormone Receptor Agonists Based on Updated Datasets and Improved Applicability Domain Metrics

机器学习 计算机科学 人工智能 领域(数学分析) 甲状腺 计算生物学 生物 数学 医学 内科学 数学分析
作者
Wenjia Liu,Zhongyu Wang,Jingwen Chen,Weihao Tang,Haobo Wang
出处
期刊:Chemical Research in Toxicology [American Chemical Society]
卷期号:36 (6): 947-958 被引量:20
标识
DOI:10.1021/acs.chemrestox.3c00074
摘要

Machine learning (ML) models for screening endocrine-disrupting chemicals (EDCs), such as thyroid stimulating hormone receptor (TSHR) agonists, are essential for sound management of chemicals. Previous models for screening TSHR agonists were built on imbalanced datasets and lacked applicability domain (AD) characterization essential for regulatory application. Herein, an updated TSHR agonist dataset was built, for which the ratio of active to inactive compounds greatly increased to 1:2.6, and chemical spaces of structure–activity landscapes (SALs) were enhanced. Resulting models based on 7 molecular representations and 4 ML algorithms were proven to outperform previous ones. Weighted similarity density (ρs) and weighted inconsistency of activities (IA) were proposed to characterize the SALs, and a state-of-the-art AD characterization methodology ADSAL{ρs, IA} was established. An optimal classifier developed with PubChem fingerprints and the random forest algorithm, coupled with ADSAL{ρs ≥ 0.15, IA ≤ 0.65}, exhibited good performance on the validation set with the area under the receiver operating characteristic curve being 0.984 and balanced accuracy being 0.941 and identified 90 TSHR agonist classes that could not be found previously. The classifier together with the ADSAL{ρs, IA} may serve as efficient tools for screening EDCs, and the AD characterization methodology may be applied to other ML models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
浮游应助smoon采纳,获得10
刚刚
失眠呆呆鱼完成签到 ,获得积分10
1秒前
科研通AI6应助自由的筝采纳,获得10
2秒前
yoimiya发布了新的文献求助10
2秒前
康米完成签到,获得积分10
2秒前
二掌柜完成签到 ,获得积分10
2秒前
边瑞明发布了新的文献求助10
3秒前
3秒前
小二郎应助花花子采纳,获得30
4秒前
啦啦啦发布了新的文献求助10
5秒前
6秒前
TheSail完成签到,获得积分10
6秒前
dkun完成签到,获得积分10
6秒前
7秒前
嘻嘻发布了新的文献求助30
7秒前
8秒前
勤恳问薇完成签到 ,获得积分10
8秒前
znq051210完成签到,获得积分20
8秒前
FleeToMars完成签到 ,获得积分10
10秒前
播种太阳发布了新的文献求助10
11秒前
慕青应助坦率芷天采纳,获得10
13秒前
天天快乐应助顺利一江采纳,获得10
14秒前
李健的小迷弟应助边瑞明采纳,获得10
14秒前
1461644768发布了新的文献求助10
14秒前
CodeCraft应助啦啦啦采纳,获得10
15秒前
在水一方应助小秋采纳,获得10
15秒前
16秒前
16秒前
Changfh完成签到 ,获得积分10
16秒前
17秒前
bkagyin应助huxiansen采纳,获得10
18秒前
19秒前
1461644768完成签到,获得积分10
20秒前
科研通AI6应助naiyantang采纳,获得10
20秒前
wqmdd发布了新的文献求助10
23秒前
23秒前
打发打发的发到付电费完成签到,获得积分10
24秒前
甜蜜凡波发布了新的文献求助10
24秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457501
求助须知:如何正确求助?哪些是违规求助? 4563864
关于积分的说明 14291930
捐赠科研通 4488544
什么是DOI,文献DOI怎么找? 2458577
邀请新用户注册赠送积分活动 1448595
关于科研通互助平台的介绍 1424244