已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning Model for Screening Thyroid Stimulating Hormone Receptor Agonists Based on Updated Datasets and Improved Applicability Domain Metrics

机器学习 计算机科学 人工智能 领域(数学分析) 甲状腺 计算生物学 生物 数学 医学 内科学 数学分析
作者
Wenjia Liu,Zhongyu Wang,Jingwen Chen,Weihao Tang,Haobo Wang
出处
期刊:Chemical Research in Toxicology [American Chemical Society]
卷期号:36 (6): 947-958 被引量:20
标识
DOI:10.1021/acs.chemrestox.3c00074
摘要

Machine learning (ML) models for screening endocrine-disrupting chemicals (EDCs), such as thyroid stimulating hormone receptor (TSHR) agonists, are essential for sound management of chemicals. Previous models for screening TSHR agonists were built on imbalanced datasets and lacked applicability domain (AD) characterization essential for regulatory application. Herein, an updated TSHR agonist dataset was built, for which the ratio of active to inactive compounds greatly increased to 1:2.6, and chemical spaces of structure–activity landscapes (SALs) were enhanced. Resulting models based on 7 molecular representations and 4 ML algorithms were proven to outperform previous ones. Weighted similarity density (ρs) and weighted inconsistency of activities (IA) were proposed to characterize the SALs, and a state-of-the-art AD characterization methodology ADSAL{ρs, IA} was established. An optimal classifier developed with PubChem fingerprints and the random forest algorithm, coupled with ADSAL{ρs ≥ 0.15, IA ≤ 0.65}, exhibited good performance on the validation set with the area under the receiver operating characteristic curve being 0.984 and balanced accuracy being 0.941 and identified 90 TSHR agonist classes that could not be found previously. The classifier together with the ADSAL{ρs, IA} may serve as efficient tools for screening EDCs, and the AD characterization methodology may be applied to other ML models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助贪玩草丛采纳,获得10
刚刚
Wone3完成签到 ,获得积分10
1秒前
3秒前
蓝希彦完成签到,获得积分10
4秒前
fffddf发布了新的文献求助10
7秒前
8秒前
9秒前
13秒前
俏皮的安萱完成签到 ,获得积分10
13秒前
仰勒完成签到 ,获得积分10
14秒前
Li完成签到,获得积分10
16秒前
春衫发布了新的文献求助10
16秒前
笨蛋没烦恼完成签到,获得积分10
16秒前
精明尔芙敏完成签到 ,获得积分10
18秒前
SciGPT应助春衫采纳,获得10
20秒前
Sean完成签到,获得积分10
20秒前
20秒前
邱乐乐发布了新的文献求助10
24秒前
天天快乐应助一只蚂蚁采纳,获得10
28秒前
春衫完成签到,获得积分10
28秒前
29秒前
liu关闭了liu文献求助
30秒前
天天快乐应助zz采纳,获得10
32秒前
葡吉发布了新的文献求助10
32秒前
健康的小鸽子完成签到 ,获得积分10
33秒前
35秒前
孤芳自赏IrisKing完成签到 ,获得积分10
38秒前
39秒前
39秒前
瓜瓜发布了新的文献求助10
45秒前
奋进的熊完成签到,获得积分10
46秒前
47秒前
若为雄才完成签到,获得积分10
49秒前
英姑应助瓜瓜采纳,获得20
53秒前
oleskarabach完成签到,获得积分20
54秒前
葡吉完成签到,获得积分10
56秒前
59秒前
1分钟前
郭欣茹发布了新的文献求助10
1分钟前
wsc完成签到 ,获得积分10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209852
求助须知:如何正确求助?哪些是违规求助? 4386958
关于积分的说明 13662002
捐赠科研通 4246451
什么是DOI,文献DOI怎么找? 2329737
邀请新用户注册赠送积分活动 1327489
关于科研通互助平台的介绍 1279915