Development and Validation of a Radiomics Model Based on Lymph-Node Regression Grading After Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer

医学 列线图 放化疗 无线电技术 接收机工作特性 磁共振成像 新辅助治疗 分级(工程) 结直肠癌 放射科 逻辑回归 阶段(地层学) 放射治疗 核医学 肿瘤科 癌症 内科学 乳腺癌 古生物学 土木工程 工程类 生物
作者
Siyu Zhang,Bin Tang,Mingrong Yu,Lei He,Ping Zheng,Chuanjun Yan,Jie Li,Qian Peng
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:117 (4): 821-833 被引量:14
标识
DOI:10.1016/j.ijrobp.2023.05.027
摘要

The response to neoadjuvant chemoradiotherapy (nCRT) varies among patients with locally advanced rectal cancer (LARC), and the treatment response of lymph nodes (LNs) to nCRT is critical in implementing a watch-and-wait strategy. A robust predictive model may help personalize treatment plans to increase the chance that patients achieve a complete response. This study investigated whether radiomics features based on prenCRT magnetic resonance imaging nodes could predict treatment response in preoperative LARC LNs.The study included 78 patients with clinical stage T3-T4, N1-2, and M0 rectal adenocarcinoma who received long-course neoadjuvant radiotherapy before surgery. Pathologists evaluated 243 LNs, of which 173 and 70 were assigned to training and validation cohorts, respectively. For each LN, 3641 radiomics features were extracted from the region of interest in high-resolution T2WI magnetic resonance imaging before nCRT. The least absolute shrinkage and selection operator regression model was used for feature selection and radiomics signature building. A prediction model based on multivariate logistic analysis, combining radiomics signature and selected LN morphologic characteristics, was developed and visualized by drawing a nomogram. The model's performance was assessed by receiver operating characteristic curve analysis and calibration curves.The radiomics signature consists of 5 selected features that were effectively discriminated within the training cohort (area under the curve [AUC], 0.908; 95% CI, 0.857%-0.958%) and the validation cohort (AUC, 0.865; 95% CI, 0.757%-0.973%). The nomogram, which consisted of radiomics signature and LN morphologic characteristics (short-axis diameter and border contours), showed better calibration and discrimination in the training and validation cohorts (AUC, 0.925; 95% CI, 0.880%-0.969% and AUC, 0.918; 95% CI, 0.854%-0.983%, respectively). The decision curve analysis confirmed that the nomogram had the highest clinical utility.The nodal-based radiomics model effectively predicts LNs treatment response in patients with LARC after nCRT, which could help personalize treatment plans and guide the implementation of the watch-and-wait approach in these patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助左友铭采纳,获得10
刚刚
CodeCraft应助左友铭采纳,获得10
刚刚
1秒前
soul完成签到,获得积分10
2秒前
2秒前
_Forelsket_完成签到,获得积分10
2秒前
我是微风完成签到,获得积分10
3秒前
3秒前
@斤斤计较发布了新的文献求助10
4秒前
4秒前
华仔应助小碗面采纳,获得10
5秒前
浮游应助阳光的小笼包采纳,获得10
8秒前
陈吉止发布了新的文献求助10
9秒前
leng完成签到 ,获得积分10
9秒前
10秒前
爆米花应助小周想学习采纳,获得30
11秒前
科研人完成签到,获得积分10
15秒前
17秒前
17秒前
17秒前
土多多完成签到,获得积分10
17秒前
18秒前
Youngman发布了新的文献求助10
18秒前
18秒前
20秒前
aaaa发布了新的文献求助10
20秒前
Dear77发布了新的文献求助10
21秒前
和谐的寄凡完成签到,获得积分10
22秒前
梁其杰完成签到,获得积分10
23秒前
guee发布了新的文献求助10
23秒前
枫桥夜泊发布了新的文献求助10
23秒前
25秒前
李云鹏完成签到,获得积分10
26秒前
Li完成签到,获得积分10
26秒前
做实验顺利完成签到 ,获得积分10
28秒前
30秒前
流萤完成签到,获得积分10
31秒前
Youngman完成签到,获得积分10
32秒前
冰海发布了新的文献求助10
35秒前
科研通AI5应助Seren采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920220
求助须知:如何正确求助?哪些是违规求助? 4191842
关于积分的说明 13019518
捐赠科研通 3962508
什么是DOI,文献DOI怎么找? 2172074
邀请新用户注册赠送积分活动 1190018
关于科研通互助平台的介绍 1098801