Development and Validation of a Radiomics Model Based on Lymph-Node Regression Grading After Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer

医学 列线图 放化疗 无线电技术 接收机工作特性 磁共振成像 新辅助治疗 分级(工程) 结直肠癌 放射科 逻辑回归 阶段(地层学) 放射治疗 核医学 肿瘤科 癌症 内科学 乳腺癌 古生物学 土木工程 工程类 生物
作者
Siyu Zhang,Bin Tang,Mingrong Yu,Lei He,Ping Zheng,Chuanjun Yan,Jie Li,Qian Peng
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:117 (4): 821-833 被引量:14
标识
DOI:10.1016/j.ijrobp.2023.05.027
摘要

The response to neoadjuvant chemoradiotherapy (nCRT) varies among patients with locally advanced rectal cancer (LARC), and the treatment response of lymph nodes (LNs) to nCRT is critical in implementing a watch-and-wait strategy. A robust predictive model may help personalize treatment plans to increase the chance that patients achieve a complete response. This study investigated whether radiomics features based on prenCRT magnetic resonance imaging nodes could predict treatment response in preoperative LARC LNs.The study included 78 patients with clinical stage T3-T4, N1-2, and M0 rectal adenocarcinoma who received long-course neoadjuvant radiotherapy before surgery. Pathologists evaluated 243 LNs, of which 173 and 70 were assigned to training and validation cohorts, respectively. For each LN, 3641 radiomics features were extracted from the region of interest in high-resolution T2WI magnetic resonance imaging before nCRT. The least absolute shrinkage and selection operator regression model was used for feature selection and radiomics signature building. A prediction model based on multivariate logistic analysis, combining radiomics signature and selected LN morphologic characteristics, was developed and visualized by drawing a nomogram. The model's performance was assessed by receiver operating characteristic curve analysis and calibration curves.The radiomics signature consists of 5 selected features that were effectively discriminated within the training cohort (area under the curve [AUC], 0.908; 95% CI, 0.857%-0.958%) and the validation cohort (AUC, 0.865; 95% CI, 0.757%-0.973%). The nomogram, which consisted of radiomics signature and LN morphologic characteristics (short-axis diameter and border contours), showed better calibration and discrimination in the training and validation cohorts (AUC, 0.925; 95% CI, 0.880%-0.969% and AUC, 0.918; 95% CI, 0.854%-0.983%, respectively). The decision curve analysis confirmed that the nomogram had the highest clinical utility.The nodal-based radiomics model effectively predicts LNs treatment response in patients with LARC after nCRT, which could help personalize treatment plans and guide the implementation of the watch-and-wait approach in these patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
锥子完成签到,获得积分10
2秒前
热心树叶应助小李子采纳,获得10
2秒前
2秒前
寻道图强应助明亮白昼采纳,获得30
2秒前
4秒前
自渡完成签到,获得积分10
5秒前
田様应助可可采纳,获得10
6秒前
小金鱼发布了新的文献求助10
8秒前
yuyu发布了新的文献求助10
9秒前
姚小包子发布了新的文献求助10
9秒前
陈文娜应助Nara2021采纳,获得10
10秒前
hhw完成签到,获得积分10
10秒前
10秒前
传奇3应助Harry采纳,获得10
11秒前
淡淡的山芙完成签到,获得积分10
11秒前
13秒前
13秒前
xixi发布了新的文献求助10
15秒前
16秒前
jjl完成签到 ,获得积分10
17秒前
onlyfive完成签到,获得积分10
18秒前
WMR发布了新的文献求助10
18秒前
Zx_1993应助lemon采纳,获得10
20秒前
咯咚发布了新的文献求助10
21秒前
23秒前
彭于晏应助小帕才采纳,获得30
23秒前
23秒前
领导范儿应助yuyu采纳,获得10
24秒前
can完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
25秒前
在水一方应助学习采纳,获得10
25秒前
kyrykyry完成签到,获得积分10
25秒前
25秒前
27秒前
liu完成签到 ,获得积分10
28秒前
酷炫过客发布了新的文献求助10
29秒前
30秒前
蔡蔡蔡发布了新的文献求助10
30秒前
李科完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5527006
求助须知:如何正确求助?哪些是违规求助? 4616908
关于积分的说明 14556326
捐赠科研通 4555526
什么是DOI,文献DOI怎么找? 2496358
邀请新用户注册赠送积分活动 1476672
关于科研通互助平台的介绍 1448212