Development and Validation of a Radiomics Model Based on Lymph-Node Regression Grading After Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer

医学 列线图 放化疗 无线电技术 接收机工作特性 磁共振成像 新辅助治疗 分级(工程) 结直肠癌 放射科 逻辑回归 阶段(地层学) 放射治疗 核医学 肿瘤科 癌症 内科学 乳腺癌 古生物学 土木工程 工程类 生物
作者
Siyu Zhang,Bin Tang,Mingrong Yu,Lei He,Ping Zheng,Chuanjun Yan,Jie Li,Qian Peng
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:117 (4): 821-833 被引量:14
标识
DOI:10.1016/j.ijrobp.2023.05.027
摘要

The response to neoadjuvant chemoradiotherapy (nCRT) varies among patients with locally advanced rectal cancer (LARC), and the treatment response of lymph nodes (LNs) to nCRT is critical in implementing a watch-and-wait strategy. A robust predictive model may help personalize treatment plans to increase the chance that patients achieve a complete response. This study investigated whether radiomics features based on prenCRT magnetic resonance imaging nodes could predict treatment response in preoperative LARC LNs.The study included 78 patients with clinical stage T3-T4, N1-2, and M0 rectal adenocarcinoma who received long-course neoadjuvant radiotherapy before surgery. Pathologists evaluated 243 LNs, of which 173 and 70 were assigned to training and validation cohorts, respectively. For each LN, 3641 radiomics features were extracted from the region of interest in high-resolution T2WI magnetic resonance imaging before nCRT. The least absolute shrinkage and selection operator regression model was used for feature selection and radiomics signature building. A prediction model based on multivariate logistic analysis, combining radiomics signature and selected LN morphologic characteristics, was developed and visualized by drawing a nomogram. The model's performance was assessed by receiver operating characteristic curve analysis and calibration curves.The radiomics signature consists of 5 selected features that were effectively discriminated within the training cohort (area under the curve [AUC], 0.908; 95% CI, 0.857%-0.958%) and the validation cohort (AUC, 0.865; 95% CI, 0.757%-0.973%). The nomogram, which consisted of radiomics signature and LN morphologic characteristics (short-axis diameter and border contours), showed better calibration and discrimination in the training and validation cohorts (AUC, 0.925; 95% CI, 0.880%-0.969% and AUC, 0.918; 95% CI, 0.854%-0.983%, respectively). The decision curve analysis confirmed that the nomogram had the highest clinical utility.The nodal-based radiomics model effectively predicts LNs treatment response in patients with LARC after nCRT, which could help personalize treatment plans and guide the implementation of the watch-and-wait approach in these patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
关正卿发布了新的文献求助10
1秒前
Yvoone发布了新的文献求助10
1秒前
LBQ发布了新的文献求助10
1秒前
坚定的迎波完成签到,获得积分10
1秒前
1秒前
2秒前
4秒前
成就胡萝卜完成签到,获得积分10
4秒前
orixero应助读书的时候采纳,获得30
5秒前
5秒前
我是老大应助luoluo采纳,获得30
5秒前
小章发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
11秒前
脑洞疼应助哭泣的月饼采纳,获得10
12秒前
Maxiaoyuan完成签到 ,获得积分10
12秒前
13秒前
打打应助中将采纳,获得10
13秒前
13秒前
14秒前
斯文败类应助王宇采纳,获得10
14秒前
15秒前
15秒前
传奇3应助LBQ采纳,获得10
15秒前
16秒前
文6完成签到 ,获得积分10
16秒前
功夫熊猫完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助30
17秒前
端庄的香薇完成签到,获得积分10
18秒前
舒舒陈发布了新的文献求助30
18秒前
笔至梦花发布了新的文献求助10
18秒前
田様应助帝国超级硕士采纳,获得10
18秒前
19秒前
19秒前
19秒前
所所应助醉熏的惜芹采纳,获得10
19秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
苗苗完成签到 ,获得积分10
23秒前
Yvoone完成签到,获得积分10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730737
求助须知:如何正确求助?哪些是违规求助? 5325240
关于积分的说明 15319659
捐赠科研通 4877070
什么是DOI,文献DOI怎么找? 2620005
邀请新用户注册赠送积分活动 1569318
关于科研通互助平台的介绍 1525851