Development and Validation of a Radiomics Model Based on Lymph-Node Regression Grading After Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer

医学 列线图 放化疗 无线电技术 接收机工作特性 磁共振成像 新辅助治疗 分级(工程) 结直肠癌 放射科 逻辑回归 阶段(地层学) 放射治疗 核医学 肿瘤科 癌症 内科学 乳腺癌 古生物学 土木工程 工程类 生物
作者
Siyu Zhang,Bin Tang,Mingrong Yu,Lei He,Ping Zheng,Chuanjun Yan,Jie Li,Qian Peng
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:117 (4): 821-833 被引量:14
标识
DOI:10.1016/j.ijrobp.2023.05.027
摘要

The response to neoadjuvant chemoradiotherapy (nCRT) varies among patients with locally advanced rectal cancer (LARC), and the treatment response of lymph nodes (LNs) to nCRT is critical in implementing a watch-and-wait strategy. A robust predictive model may help personalize treatment plans to increase the chance that patients achieve a complete response. This study investigated whether radiomics features based on prenCRT magnetic resonance imaging nodes could predict treatment response in preoperative LARC LNs.The study included 78 patients with clinical stage T3-T4, N1-2, and M0 rectal adenocarcinoma who received long-course neoadjuvant radiotherapy before surgery. Pathologists evaluated 243 LNs, of which 173 and 70 were assigned to training and validation cohorts, respectively. For each LN, 3641 radiomics features were extracted from the region of interest in high-resolution T2WI magnetic resonance imaging before nCRT. The least absolute shrinkage and selection operator regression model was used for feature selection and radiomics signature building. A prediction model based on multivariate logistic analysis, combining radiomics signature and selected LN morphologic characteristics, was developed and visualized by drawing a nomogram. The model's performance was assessed by receiver operating characteristic curve analysis and calibration curves.The radiomics signature consists of 5 selected features that were effectively discriminated within the training cohort (area under the curve [AUC], 0.908; 95% CI, 0.857%-0.958%) and the validation cohort (AUC, 0.865; 95% CI, 0.757%-0.973%). The nomogram, which consisted of radiomics signature and LN morphologic characteristics (short-axis diameter and border contours), showed better calibration and discrimination in the training and validation cohorts (AUC, 0.925; 95% CI, 0.880%-0.969% and AUC, 0.918; 95% CI, 0.854%-0.983%, respectively). The decision curve analysis confirmed that the nomogram had the highest clinical utility.The nodal-based radiomics model effectively predicts LNs treatment response in patients with LARC after nCRT, which could help personalize treatment plans and guide the implementation of the watch-and-wait approach in these patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asdf完成签到,获得积分10
1秒前
3秒前
asdf发布了新的文献求助10
4秒前
6秒前
Annie发布了新的文献求助10
7秒前
清爽老九完成签到,获得积分10
9秒前
10秒前
爱吃肉肉的手性分子完成签到,获得积分10
11秒前
土豆完成签到 ,获得积分10
12秒前
12秒前
清爽老九发布了新的文献求助10
15秒前
耶嘿发布了新的文献求助10
17秒前
18秒前
KekeJ发布了新的文献求助10
19秒前
微凉完成签到 ,获得积分10
19秒前
Magic完成签到,获得积分10
19秒前
青糯完成签到 ,获得积分10
23秒前
希望天下0贩的0应助Jodie采纳,获得10
24秒前
24秒前
28秒前
天天快乐应助微笑采纳,获得10
29秒前
30秒前
小二郎应助我要做科研狗采纳,获得30
32秒前
33秒前
34秒前
科目三应助Bonnienuit采纳,获得10
34秒前
海盗船长发布了新的文献求助10
35秒前
37秒前
jingcheng完成签到,获得积分10
38秒前
愉快碧凡发布了新的文献求助10
38秒前
39秒前
39秒前
Jodie发布了新的文献求助10
41秒前
orixero应助科研通管家采纳,获得10
43秒前
桐桐应助科研通管家采纳,获得10
43秒前
打打应助科研通管家采纳,获得10
43秒前
Ava应助科研通管家采纳,获得10
43秒前
Hello应助科研通管家采纳,获得10
43秒前
星辰大海应助科研通管家采纳,获得10
43秒前
Hello应助科研通管家采纳,获得10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558022
求助须知:如何正确求助?哪些是违规求助? 4642970
关于积分的说明 14670064
捐赠科研通 4584444
什么是DOI,文献DOI怎么找? 2514849
邀请新用户注册赠送积分活动 1489006
关于科研通互助平台的介绍 1459630