Development and Validation of a Radiomics Model Based on Lymph-Node Regression Grading After Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer

医学 列线图 放化疗 无线电技术 接收机工作特性 磁共振成像 新辅助治疗 分级(工程) 结直肠癌 放射科 逻辑回归 阶段(地层学) 放射治疗 核医学 肿瘤科 癌症 内科学 乳腺癌 古生物学 土木工程 工程类 生物
作者
Siyu Zhang,Bin Tang,Mingrong Yu,Lei He,Ping Zheng,Chuanjun Yan,Jie Li,Qian Peng
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:117 (4): 821-833 被引量:14
标识
DOI:10.1016/j.ijrobp.2023.05.027
摘要

The response to neoadjuvant chemoradiotherapy (nCRT) varies among patients with locally advanced rectal cancer (LARC), and the treatment response of lymph nodes (LNs) to nCRT is critical in implementing a watch-and-wait strategy. A robust predictive model may help personalize treatment plans to increase the chance that patients achieve a complete response. This study investigated whether radiomics features based on prenCRT magnetic resonance imaging nodes could predict treatment response in preoperative LARC LNs.The study included 78 patients with clinical stage T3-T4, N1-2, and M0 rectal adenocarcinoma who received long-course neoadjuvant radiotherapy before surgery. Pathologists evaluated 243 LNs, of which 173 and 70 were assigned to training and validation cohorts, respectively. For each LN, 3641 radiomics features were extracted from the region of interest in high-resolution T2WI magnetic resonance imaging before nCRT. The least absolute shrinkage and selection operator regression model was used for feature selection and radiomics signature building. A prediction model based on multivariate logistic analysis, combining radiomics signature and selected LN morphologic characteristics, was developed and visualized by drawing a nomogram. The model's performance was assessed by receiver operating characteristic curve analysis and calibration curves.The radiomics signature consists of 5 selected features that were effectively discriminated within the training cohort (area under the curve [AUC], 0.908; 95% CI, 0.857%-0.958%) and the validation cohort (AUC, 0.865; 95% CI, 0.757%-0.973%). The nomogram, which consisted of radiomics signature and LN morphologic characteristics (short-axis diameter and border contours), showed better calibration and discrimination in the training and validation cohorts (AUC, 0.925; 95% CI, 0.880%-0.969% and AUC, 0.918; 95% CI, 0.854%-0.983%, respectively). The decision curve analysis confirmed that the nomogram had the highest clinical utility.The nodal-based radiomics model effectively predicts LNs treatment response in patients with LARC after nCRT, which could help personalize treatment plans and guide the implementation of the watch-and-wait approach in these patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小明发布了新的文献求助20
1秒前
桃子e完成签到,获得积分10
1秒前
simpleblue完成签到,获得积分10
1秒前
Hai完成签到,获得积分10
2秒前
虚幻梦寒发布了新的文献求助10
2秒前
雨中客完成签到,获得积分10
2秒前
yiy37完成签到,获得积分10
2秒前
3秒前
刘立凡完成签到,获得积分10
3秒前
江果有点甜完成签到,获得积分10
3秒前
Bmyndm发布了新的文献求助10
3秒前
咕咕咕咕咕完成签到 ,获得积分10
4秒前
Celia完成签到,获得积分10
4秒前
悠米爱吃图奇完成签到 ,获得积分10
5秒前
剧院的饭桶完成签到,获得积分10
5秒前
萂昕完成签到 ,获得积分10
5秒前
大福同学完成签到,获得积分10
6秒前
打打应助喜悦幻雪采纳,获得10
6秒前
三寿发布了新的文献求助10
7秒前
nannan发布了新的文献求助10
8秒前
后撤步7777发布了新的文献求助10
8秒前
xtlee完成签到,获得积分10
8秒前
nlwsp完成签到 ,获得积分10
8秒前
彭于晏应助qah采纳,获得10
9秒前
9秒前
iNk应助kk采纳,获得20
9秒前
momo发布了新的文献求助10
9秒前
生动高丽发布了新的文献求助10
10秒前
木偶人完成签到,获得积分10
10秒前
虚心的唯雪完成签到,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
核桃发布了新的文献求助10
11秒前
11秒前
liu完成签到,获得积分10
11秒前
方源发布了新的文献求助10
12秒前
荼蘼如雪完成签到,获得积分10
12秒前
研友_ZeqAxZ完成签到,获得积分0
12秒前
阔达花卷完成签到,获得积分20
12秒前
三寿完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477103
求助须知:如何正确求助?哪些是违规求助? 4578993
关于积分的说明 14366029
捐赠科研通 4507069
什么是DOI,文献DOI怎么找? 2469632
邀请新用户注册赠送积分活动 1456830
关于科研通互助平台的介绍 1430868