Development and Validation of a Radiomics Model Based on Lymph-Node Regression Grading After Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer

医学 列线图 放化疗 无线电技术 接收机工作特性 磁共振成像 新辅助治疗 分级(工程) 结直肠癌 放射科 逻辑回归 阶段(地层学) 放射治疗 核医学 肿瘤科 癌症 内科学 乳腺癌 古生物学 土木工程 工程类 生物
作者
Siyu Zhang,Bin Tang,Mingrong Yu,Lei He,Ping Zheng,Chuanjun Yan,Jie Li,Qian Peng
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:117 (4): 821-833 被引量:14
标识
DOI:10.1016/j.ijrobp.2023.05.027
摘要

The response to neoadjuvant chemoradiotherapy (nCRT) varies among patients with locally advanced rectal cancer (LARC), and the treatment response of lymph nodes (LNs) to nCRT is critical in implementing a watch-and-wait strategy. A robust predictive model may help personalize treatment plans to increase the chance that patients achieve a complete response. This study investigated whether radiomics features based on prenCRT magnetic resonance imaging nodes could predict treatment response in preoperative LARC LNs.The study included 78 patients with clinical stage T3-T4, N1-2, and M0 rectal adenocarcinoma who received long-course neoadjuvant radiotherapy before surgery. Pathologists evaluated 243 LNs, of which 173 and 70 were assigned to training and validation cohorts, respectively. For each LN, 3641 radiomics features were extracted from the region of interest in high-resolution T2WI magnetic resonance imaging before nCRT. The least absolute shrinkage and selection operator regression model was used for feature selection and radiomics signature building. A prediction model based on multivariate logistic analysis, combining radiomics signature and selected LN morphologic characteristics, was developed and visualized by drawing a nomogram. The model's performance was assessed by receiver operating characteristic curve analysis and calibration curves.The radiomics signature consists of 5 selected features that were effectively discriminated within the training cohort (area under the curve [AUC], 0.908; 95% CI, 0.857%-0.958%) and the validation cohort (AUC, 0.865; 95% CI, 0.757%-0.973%). The nomogram, which consisted of radiomics signature and LN morphologic characteristics (short-axis diameter and border contours), showed better calibration and discrimination in the training and validation cohorts (AUC, 0.925; 95% CI, 0.880%-0.969% and AUC, 0.918; 95% CI, 0.854%-0.983%, respectively). The decision curve analysis confirmed that the nomogram had the highest clinical utility.The nodal-based radiomics model effectively predicts LNs treatment response in patients with LARC after nCRT, which could help personalize treatment plans and guide the implementation of the watch-and-wait approach in these patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月白发布了新的文献求助10
1秒前
banban完成签到,获得积分10
1秒前
1秒前
1秒前
李健的小迷弟应助pliciyir采纳,获得10
2秒前
2秒前
孟寐以求发布了新的文献求助10
3秒前
3秒前
jjh发布了新的文献求助10
4秒前
4秒前
靖柔完成签到,获得积分10
5秒前
5秒前
尤尤发布了新的文献求助30
7秒前
pyh发布了新的文献求助10
8秒前
8秒前
早睡早起发布了新的文献求助10
8秒前
8秒前
lyl发布了新的文献求助10
9秒前
cdercder发布了新的文献求助30
9秒前
标致的冬萱完成签到,获得积分10
9秒前
9秒前
年轻蛋挞完成签到,获得积分20
10秒前
10秒前
Bake完成签到,获得积分10
11秒前
充电宝应助Cyd采纳,获得10
12秒前
伊莱恩发布了新的文献求助10
12秒前
13秒前
年轻的灵安完成签到,获得积分10
14秒前
平安喜乐发布了新的文献求助10
15秒前
在水一方应助年轻蛋挞采纳,获得10
17秒前
Gwen完成签到,获得积分10
17秒前
17秒前
18秒前
coffee发布了新的文献求助20
18秒前
zzr完成签到 ,获得积分10
19秒前
科研通AI2S应助小半夏汤采纳,获得10
19秒前
调皮的醉山完成签到 ,获得积分10
19秒前
20秒前
伊莱恩完成签到,获得积分20
21秒前
Eason完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537527
求助须知:如何正确求助?哪些是违规求助? 4625009
关于积分的说明 14594275
捐赠科研通 4565491
什么是DOI,文献DOI怎么找? 2502468
邀请新用户注册赠送积分活动 1481035
关于科研通互助平台的介绍 1452224