Development and Validation of a Radiomics Model Based on Lymph-Node Regression Grading After Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer

医学 列线图 放化疗 无线电技术 接收机工作特性 磁共振成像 新辅助治疗 分级(工程) 结直肠癌 放射科 逻辑回归 阶段(地层学) 放射治疗 核医学 肿瘤科 癌症 内科学 乳腺癌 古生物学 土木工程 工程类 生物
作者
Siyu Zhang,Bin Tang,Mingrong Yu,Lei He,Ping Zheng,Chuanjun Yan,Jie Li,Qian Peng
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:117 (4): 821-833 被引量:14
标识
DOI:10.1016/j.ijrobp.2023.05.027
摘要

The response to neoadjuvant chemoradiotherapy (nCRT) varies among patients with locally advanced rectal cancer (LARC), and the treatment response of lymph nodes (LNs) to nCRT is critical in implementing a watch-and-wait strategy. A robust predictive model may help personalize treatment plans to increase the chance that patients achieve a complete response. This study investigated whether radiomics features based on prenCRT magnetic resonance imaging nodes could predict treatment response in preoperative LARC LNs.The study included 78 patients with clinical stage T3-T4, N1-2, and M0 rectal adenocarcinoma who received long-course neoadjuvant radiotherapy before surgery. Pathologists evaluated 243 LNs, of which 173 and 70 were assigned to training and validation cohorts, respectively. For each LN, 3641 radiomics features were extracted from the region of interest in high-resolution T2WI magnetic resonance imaging before nCRT. The least absolute shrinkage and selection operator regression model was used for feature selection and radiomics signature building. A prediction model based on multivariate logistic analysis, combining radiomics signature and selected LN morphologic characteristics, was developed and visualized by drawing a nomogram. The model's performance was assessed by receiver operating characteristic curve analysis and calibration curves.The radiomics signature consists of 5 selected features that were effectively discriminated within the training cohort (area under the curve [AUC], 0.908; 95% CI, 0.857%-0.958%) and the validation cohort (AUC, 0.865; 95% CI, 0.757%-0.973%). The nomogram, which consisted of radiomics signature and LN morphologic characteristics (short-axis diameter and border contours), showed better calibration and discrimination in the training and validation cohorts (AUC, 0.925; 95% CI, 0.880%-0.969% and AUC, 0.918; 95% CI, 0.854%-0.983%, respectively). The decision curve analysis confirmed that the nomogram had the highest clinical utility.The nodal-based radiomics model effectively predicts LNs treatment response in patients with LARC after nCRT, which could help personalize treatment plans and guide the implementation of the watch-and-wait approach in these patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小萝卜123发布了新的文献求助10
刚刚
会飞的小甘蔗完成签到 ,获得积分10
5秒前
研究生完成签到 ,获得积分10
11秒前
浮游应助xh采纳,获得10
12秒前
中原第一深情完成签到,获得积分10
13秒前
13秒前
15秒前
海洋球完成签到 ,获得积分10
17秒前
呆萌安萱完成签到,获得积分10
18秒前
她的城完成签到,获得积分0
19秒前
20秒前
研友_ZG4ml8完成签到 ,获得积分10
20秒前
zrrr完成签到 ,获得积分10
21秒前
呆萌安萱发布了新的文献求助10
22秒前
我是老大应助小Y采纳,获得10
24秒前
Youth完成签到 ,获得积分20
27秒前
FCL完成签到,获得积分10
30秒前
小蘑菇应助飞丹采纳,获得10
32秒前
32秒前
科研通AI2S应助YOLO采纳,获得10
33秒前
十月天秤完成签到,获得积分10
37秒前
浮游应助小萝卜123采纳,获得10
38秒前
overThat完成签到,获得积分10
41秒前
42秒前
43秒前
Akim应助史念薇采纳,获得10
44秒前
来了来了完成签到 ,获得积分10
46秒前
红毛兔完成签到 ,获得积分10
46秒前
岁月如歌完成签到 ,获得积分0
47秒前
wao完成签到 ,获得积分10
47秒前
48秒前
飞丹发布了新的文献求助10
49秒前
寒冷的月亮完成签到,获得积分10
51秒前
研友_ndvWy8完成签到,获得积分10
53秒前
wxxz完成签到,获得积分10
54秒前
Yina完成签到 ,获得积分10
54秒前
飞丹完成签到,获得积分10
57秒前
57秒前
Jane完成签到,获得积分10
58秒前
雪白书南完成签到 ,获得积分10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5315270
求助须知:如何正确求助?哪些是违规求助? 4457945
关于积分的说明 13868470
捐赠科研通 4347468
什么是DOI,文献DOI怎么找? 2387790
邀请新用户注册赠送积分活动 1381932
关于科研通互助平台的介绍 1351243