Enabling causality learning in smart factories with hierarchical digital twins

因果关系(物理学) 过程(计算) 背景(考古学) 推论 贝叶斯网络 代表(政治) 因果推理 计算机科学 建筑 数据科学 人工智能 人机交互 机器学习 古生物学 政治学 法学 经济 视觉艺术 生物 计量经济学 艺术 物理 操作系统 量子力学 政治
作者
Marco Lippi,Matteo Martinelli,Marco Picone,Franco Zambonelli
出处
期刊:Computers in Industry [Elsevier BV]
卷期号:148: 103892-103892 被引量:4
标识
DOI:10.1016/j.compind.2023.103892
摘要

Smart factories are complex systems where many different components need to interact and cooperate in order to achieve common goals. In particular, devices must be endowed with the skill of learning how to react in front of evolving situations and unexpected scenarios. In order to develop these capabilities, we argue that systems will need to build an internal, and possibly shared, representation of their operational world that represents causal relations between actions and observed variables. Within this context, digital twins will play a crucial role, by providing the ideal infrastructure for the standardisation and digitisation of the whole industrial process, laying the groundwork for the high-level learning and inference processes. In this paper, we introduce a novel hierarchical architecture enabled by digital twins, that can be exploited to build logical abstractions of the overall system, and to learn causal models of the environment directly from data. We implement our vision through a case study of a simulated production process. Our results in that scenario show that Bayesian networks and intervention via do-calculus can be effectively exploited within the proposed architecture to learn interpretable models of the environment. Moreover, we evaluate how the use of digital twins has a strong impact on the reduction of the physical complexity perceived by external applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dorian发布了新的文献求助20
2秒前
2秒前
4秒前
Active发布了新的文献求助10
4秒前
4秒前
852应助小张采纳,获得10
4秒前
7秒前
Linux2000Pro完成签到,获得积分10
7秒前
沃研发布了新的文献求助10
7秒前
小二郎应助Shennnn采纳,获得10
8秒前
安详靖柏完成签到 ,获得积分10
8秒前
9秒前
9秒前
WIsh完成签到 ,获得积分10
10秒前
13秒前
Rollei发布了新的文献求助10
13秒前
甜美冰旋发布了新的文献求助10
13秒前
文献高手完成签到 ,获得积分10
14秒前
红烧板蓝根完成签到,获得积分10
15秒前
17秒前
18秒前
Yimi发布了新的文献求助10
18秒前
18秒前
沃研完成签到 ,获得积分10
19秒前
Rollei完成签到,获得积分10
20秒前
21秒前
情怀应助ts采纳,获得10
22秒前
22秒前
上官若男应助坚强的赛凤采纳,获得10
22秒前
22秒前
蛋筒完成签到,获得积分10
23秒前
田様应助那一片海采纳,获得10
24秒前
iNk应助Yimi采纳,获得10
26秒前
26秒前
刻苦的宛白应助宋晴也采纳,获得10
27秒前
思源应助甜美冰旋采纳,获得10
27秒前
27秒前
Joyce发布了新的文献求助10
27秒前
聪明藏今完成签到,获得积分10
28秒前
共享精神应助Iris采纳,获得30
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967152
求助须知:如何正确求助?哪些是违规求助? 3512481
关于积分的说明 11163524
捐赠科研通 3247421
什么是DOI,文献DOI怎么找? 1793805
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450