亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi‐scale cascaded networks for synthesis of mammogram to decrease intensity distortion and increase model‐based perceptual similarity

人工智能 数字乳腺摄影术 计算机科学 失真(音乐) 计算机视觉 卷积神经网络 相似性(几何) 特征(语言学) 人工神经网络 纹理(宇宙学) 模式识别(心理学) 图像(数学) 乳腺摄影术 乳腺癌 医学 癌症 电信 放大器 语言学 哲学 带宽(计算) 内科学
作者
Gongfa Jiang,Zhiwei He,Yuanpin Zhou,Jun Wei,Yuesheng Xu,Hui Zeng,Jiefang Wu,Genggeng Qin,Weiguo Chen,Yao Lu
出处
期刊:Medical Physics [Wiley]
卷期号:50 (2): 837-853 被引量:1
标识
DOI:10.1002/mp.16007
摘要

Synthetic digital mammogram (SDM) is a 2D image generated from digital breast tomosynthesis (DBT) and used as a substitute for a full-field digital mammogram (FFDM) to reduce the radiation dose for breast cancer screening. The previous deep learning-based method used FFDM images as the ground truth, and trained a single neural network to directly generate SDM images with similar appearances (e.g., intensity distribution, textures) to the FFDM images. However, the FFDM image has a different texture pattern from DBT. The difference in texture pattern might make the training of the neural network unstable and result in high-intensity distortion, which makes it hard to decrease intensity distortion and increase perceptual similarity (e.g., generate similar textures) at the same time. Clinically, radiologists want to have a 2D synthesized image that feels like an FFDM image in vision and preserves local structures such as both mass and microcalcifications (MCs) in DBT because radiologists have been trained on reading FFDM images for a long time, while local structures are important for diagnosis. In this study, we proposed to use a deep convolutional neural network to learn the transformation to generate SDM from DBT.To decrease intensity distortion and increase perceptual similarity, a multi-scale cascaded network (MSCN) is proposed to generate low-frequency structures (e.g., intensity distribution) and high-frequency structures (e.g., textures) separately. The MSCN consist of two cascaded sub-networks: the first sub-network is used to predict the low-frequency part of the FFDM image; the second sub-network is used to generate a full SDM image with textures similar to the FFDM image based on the prediction of the first sub-network. The mean-squared error (MSE) objective function is used to train the first sub-network, termed low-frequency network, to generate a low-frequency SDM image. The gradient-guided generative adversarial network's objective function is to train the second sub-network, termed high-frequency network, to generate a full SDM image with textures similar to the FFDM image.1646 cases with FFDM and DBT were retrospectively collected from the Hologic Selenia system for training and validation dataset, and 145 cases with masses or MC clusters were independently collected from the Hologic Selenia system for testing dataset. For comparison, the baseline network has the same architecture as the high-frequency network and directly generates a full SDM image. Compared to the baseline method, the proposed MSCN improves the peak-to-noise ratio from 25.3 to 27.9 dB and improves the structural similarity from 0.703 to 0.724, and significantly increases the perceptual similarity.The proposed method can stabilize the training and generate SDM images with lower intensity distortion and higher perceptual similarity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
monair完成签到 ,获得积分10
1秒前
brwen完成签到,获得积分10
2秒前
3秒前
yue完成签到,获得积分10
3秒前
yue发布了新的文献求助10
8秒前
且从容完成签到,获得积分10
9秒前
11秒前
超人不会飞完成签到,获得积分10
18秒前
冷静剑成发布了新的文献求助10
19秒前
19秒前
科研通AI5应助超人不会飞采纳,获得10
22秒前
cy发布了新的文献求助10
23秒前
Chondrite发布了新的文献求助10
23秒前
24秒前
江江发布了新的文献求助10
24秒前
冷静剑成完成签到,获得积分10
28秒前
仙方活命饮完成签到,获得积分10
28秒前
麻酱发布了新的文献求助10
29秒前
小马甲应助cy采纳,获得10
30秒前
30秒前
愿不负丶发布了新的文献求助10
31秒前
yang完成签到 ,获得积分10
33秒前
111完成签到 ,获得积分10
34秒前
yyds发布了新的文献求助10
35秒前
Chondrite完成签到,获得积分10
36秒前
39秒前
大模型应助麻酱采纳,获得10
40秒前
想游泳的鹰完成签到,获得积分10
43秒前
粗粗布局发布了新的文献求助10
44秒前
在水一方应助愿不负丶采纳,获得10
49秒前
50秒前
小二郎应助weiquanfei采纳,获得10
52秒前
58秒前
翻译度完成签到,获得积分10
1分钟前
NOTHING完成签到 ,获得积分10
1分钟前
1分钟前
TheaGao完成签到 ,获得积分10
1分钟前
1分钟前
小蘑菇应助Xiaoyuan采纳,获得30
1分钟前
adios完成签到,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526437
求助须知:如何正确求助?哪些是违规求助? 3106899
关于积分的说明 9281822
捐赠科研通 2804409
什么是DOI,文献DOI怎么找? 1539435
邀请新用户注册赠送积分活动 716571
科研通“疑难数据库(出版商)”最低求助积分说明 709546