Grain size dependence of grain rotation under high pressure and high temperature

粒度 旋转(数学) 材料科学 晶界强化 晶界 位错 晶粒生长 变形机理 变形(气象学) 复合材料 凝聚态物理 物理 几何学 微观结构 数学
作者
Qian Liu,Zhengwei Xiong,Xiaoru Liu,Leiming Fang,Chao Lv,Jia Yang,Yi Liu,Youjun Zhang,Wenkun Zhu,Jun Li,Yuying Yu,Zhipeng Gao
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:134 (18) 被引量:2
标识
DOI:10.1063/5.0164783
摘要

Grain rotation caused by the movement of dislocations is a determinant factor for the mechanical behavior of metals. In general, the grain rotation may be mediated by grain boundary dislocations (GB-dis) and intragranular dislocations (In-dis), which are closely associated with grain size. Few works have investigated how grain size depends on grain rotation, and the competitive mechanism between GB-dis and In-dis remains unclear. The present work investigates the structural evolution and deformation of coarse-grained tungsten under high pressure. The results show that under high pressure, the nano-sized grains preferentially rotate with dislocation climbing in GBs. Under high pressure, In-dis migrate faster across coarse grains and are absorbed by GBs on the other side, resulting in grain rotation. Elevated temperature also facilitates the migration of In-dis to arrive GBs where they can be absorbed by GBs, thus promoting grain rotation. The theoretical results show that grain rotation occurs easily under high pressure and high temperature. With increasing grain size, the stress-induced rotation mechanism goes from being dominated by GB-dis to being dominated by In-dis migration. The competitive relationship between GB-dis and In-dis during grain rotation is elaborated, providing a new strategy for designing materials under high pressure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orixero应助淡淡奇异果采纳,获得10
4秒前
怡然的姒发布了新的文献求助10
5秒前
ccccc发布了新的文献求助10
5秒前
谷雨下完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
烟花应助Jessie采纳,获得10
8秒前
8秒前
田様应助啦啦啦采纳,获得10
8秒前
共享精神应助CHR采纳,获得10
9秒前
科目三应助Blessing采纳,获得10
10秒前
11秒前
ming发布了新的文献求助10
11秒前
12秒前
华仔应助飞鸿踏雪泥采纳,获得10
12秒前
Jasper应助xiha西希采纳,获得10
13秒前
Orange应助高高千琴采纳,获得10
17秒前
17秒前
18秒前
18秒前
21秒前
22秒前
wang发布了新的文献求助10
22秒前
Jc完成签到 ,获得积分10
23秒前
小巧问柳发布了新的文献求助10
26秒前
26秒前
27秒前
高高千琴发布了新的文献求助10
31秒前
贪玩的篮球完成签到,获得积分10
34秒前
淡淡奇异果完成签到,获得积分10
35秒前
bc应助苏卿采纳,获得30
36秒前
36秒前
ccccc完成签到,获得积分10
36秒前
Ben发布了新的文献求助10
38秒前
苏源智发布了新的文献求助10
39秒前
小巧问柳完成签到,获得积分10
39秒前
111完成签到 ,获得积分10
41秒前
小马甲应助加油搬砖采纳,获得10
42秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670919
求助须知:如何正确求助?哪些是违规求助? 3227795
关于积分的说明 9777243
捐赠科研通 2937977
什么是DOI,文献DOI怎么找? 1609718
邀请新用户注册赠送积分活动 760446
科研通“疑难数据库(出版商)”最低求助积分说明 735959