亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Self-Adaptive Neural Network-Based Fractional-Order Nonlinear Observer Design for State of Charge Estimation of Lithium-Ion Batteries

荷电状态 控制理论(社会学) 非线性系统 人工神经网络 观察员(物理) 计算机科学 电池(电) 算法 人工智能 物理 功率(物理) 控制(管理) 量子力学
作者
Ruohan Guo,Yiming Xu,Cungang Hu,Weixiang Shen
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:29 (3): 1761-1772 被引量:32
标识
DOI:10.1109/tmech.2023.3321719
摘要

Accurate state of charge (SOC) estimation provides an essential basis for the functionalities of battery management systems in electric vehicles (EVs). However, conventional equivalent circuit models suffer significant model accuracy deterioration under extreme SOCs, nonroom temperatures, and heavy loads. In this work, we implant the Butler–Volmer (BV) equation and the fractional-order model representation into a model-based physics-informed neural network (M-PINN) to simulate current-dependent battery charge transfer dynamics under various operating conditions. This M-PINN replaces the original neuron structure with a set of submodels and allows the BV coefficient to be randomly selected in a roughly estimated range for each submodel. By applying the Lyapunov analysis, a self-adaptive neural network-based fractional-order observer is proposed to guarantee the uniform ultimate boundedness stability of both system states and M-PINN weights, thereby achieving accurate online SOC estimation without necessitating substantial data and efforts for offline neural network training. The experimental validations are implemented under three EV driving profiles with different average currents at −5, 5, 20, and 35 Celsius. The validation results demonstrate that the proposed method achieves the mean absolute errors of less than 0.9% in all the validation scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XUAN完成签到,获得积分10
2秒前
CipherSage应助ccczzz采纳,获得30
4秒前
Ava应助khan采纳,获得10
10秒前
11秒前
Hello应助若离采纳,获得10
12秒前
XUAN发布了新的文献求助10
12秒前
冷HorToo完成签到 ,获得积分10
16秒前
17秒前
共享精神应助khan采纳,获得10
29秒前
ccczzz完成签到,获得积分10
43秒前
Spine完成签到,获得积分10
43秒前
47秒前
GPTea应助khan采纳,获得10
53秒前
ccczzz发布了新的文献求助30
53秒前
内向如松发布了新的文献求助30
59秒前
1分钟前
1分钟前
若离发布了新的文献求助10
1分钟前
nenoaowu发布了新的文献求助10
1分钟前
aveturner完成签到,获得积分10
1分钟前
1分钟前
1分钟前
nenoaowu完成签到,获得积分10
1分钟前
开胃咖喱发布了新的文献求助10
1分钟前
顾矜应助香奈宝采纳,获得10
1分钟前
Affenyi发布了新的文献求助10
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
1分钟前
科研通AI5应助khan采纳,获得10
1分钟前
枫于林完成签到 ,获得积分0
1分钟前
1分钟前
若离完成签到,获得积分10
1分钟前
棠真完成签到 ,获得积分0
1分钟前
PrayOne完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186017
求助须知:如何正确求助?哪些是违规求助? 4371340
关于积分的说明 13612062
捐赠科研通 4223700
什么是DOI,文献DOI怎么找? 2316584
邀请新用户注册赠送积分活动 1315199
关于科研通互助平台的介绍 1264220