A dual-branch siamese spatial-spectral transformer attention network for Hyperspectral Image Change Detection

高光谱成像 计算机科学 人工智能 模式识别(心理学) 像素 变压器 卷积神经网络 特征提取 物理 量子力学 电压
作者
Yiyan Zhang,Tingting Wang,Chenkai Zhang,Shufang Xu,Hongmin Gao,Chenming Li
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122125-122125 被引量:5
标识
DOI:10.1016/j.eswa.2023.122125
摘要

The convolutional neural networks have recently gained widespread attention in Hyperspectral Image Change Detection (HSI-CD) due to their outstanding feature extraction ability. However, limited by the inherent network backbones, the convolutional neural networks (CNNs) fail to mine the sequence attributes and model the intricate relationships of spectral signatures. In contrast, transformers are proficient at learning sequence information owing to the powerful self-attention mechanisms. The two backbone structures exhibit complementary spatial and spectral feature extraction strengths, respectively. Inspired by this, we propose a dual-branch siamese spatial–spectral transformer attention network (DBS3TAN) for HSI-CD. The main idea is to fully exploit the advantages of CNNs and transformers for spatial and spectral feature extraction. More importantly, we devise the two key modules, i.e., the spatial attention module and the spatial–spectral transformer module. The former utilizes depthwise separable convolutions and attention mechanisms to emphasize the features of dual-temporal HSIs from the spatial perspective. The latter focuses on the sequence attributes of spectral signatures and mines the spatial characteristics from adjacent pixels. We employ the weighted contrastive loss function to separate the changed and unchanged pixels more reliably and set the random weight factors to balance the contributions of the two branches. Finally, the threshold values judgment is used to obtain the ultimate detection maps. We conduct extensive experiments to evaluate the DBS3TAN on three HSI datasets, demonstrating its superior performances than compared methods qualitatively and quantitatively. The source code will be available at https://github.com/zhangyiyan001/DBS3TAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc小木屋应助oo采纳,获得10
刚刚
李健应助LN采纳,获得10
2秒前
Lucas应助今夜无人入眠采纳,获得10
2秒前
Camellia发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
起风了发布了新的文献求助10
5秒前
叶子完成签到,获得积分10
6秒前
多喝水我发布了新的文献求助10
6秒前
guo发布了新的文献求助10
7秒前
笨笨石头应助林林采纳,获得10
7秒前
hihi发布了新的文献求助10
8秒前
CHyaa完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
酷波er应助佳。采纳,获得10
10秒前
领导范儿应助33采纳,获得10
10秒前
郭郭完成签到 ,获得积分10
11秒前
小二郎应助戴维少尉采纳,获得10
11秒前
12秒前
zhangling发布了新的文献求助10
12秒前
13秒前
13秒前
叶子发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
科研通AI2S应助一水独流采纳,获得10
16秒前
16秒前
17秒前
Spine发布了新的文献求助10
18秒前
18秒前
18秒前
19秒前
20秒前
20秒前
QL发布了新的文献求助10
20秒前
岂识浊醪妙理应助zhangling采纳,获得10
20秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160802
求助须知:如何正确求助?哪些是违规求助? 2811883
关于积分的说明 7893940
捐赠科研通 2470842
什么是DOI,文献DOI怎么找? 1315775
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602053