Incentive-driven long-term optimization for hierarchical federated learning

计算机科学 激励 后悔 云计算 杠杆(统计) 延迟(音频) 机器学习 人工智能 电信 经济 微观经济学 操作系统
作者
Lina Su,Zongpeng Li
出处
期刊:Computer Networks [Elsevier]
卷期号:234: 109944-109944 被引量:2
标识
DOI:10.1016/j.comnet.2023.109944
摘要

Hierarchical federated learning (HFL), an emerging paradigm of the client-edge-cloud architecture, can effectively leverage nearby edge servers to conduct model aggregation, significantly reducing transmission overhead. HFL faces both technical and economic challenges: first, in the online setting, computation resources and network bandwidth can only reveal themselves when clients participate in HFL model training. Second, the model training process consumes substantial resources at the clients, such as energy, computation, and bandwidth. It is unrealistic to assume that all clients contribute their resources voluntarily. Thorough investigation is lacking for these challenges in existing HFL research. This work develops a novel online algorithm AUCS, based on the auction and combinatorial multi-armed bandit, to minimize the overall latency of HFL training. AUCS utilizes the ratio of upper confidence bound-based reward to the bid as a criterion for winner determination. Then, AUCS computes the key payment for each winner to guarantee truthfulness of the incentive mechanism. Theoretically, AUCS can achieve sub-linear regret, truthfulness, individual rationality and computational efficiency, and guarantees model convergence. Simulations on real-world datasets and training tasks demonstrate the advantages of AUCS in terms of training latency, model accuracy, and system efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曹文强完成签到,获得积分10
刚刚
JerryZ发布了新的文献求助10
3秒前
ACE发布了新的文献求助10
4秒前
丘比特应助小可采纳,获得10
4秒前
爆米花应助鱼加面大盘鸡采纳,获得10
5秒前
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
7秒前
Hello应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
称心曼安应助科研通管家采纳,获得10
7秒前
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
xiaobai应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
7秒前
共享精神应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
8秒前
Akim应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
LPPQBB应助科研通管家采纳,获得150
8秒前
8秒前
完美世界应助狗狗明明采纳,获得10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355169
求助须知:如何正确求助?哪些是违规求助? 4487134
关于积分的说明 13969038
捐赠科研通 4387809
什么是DOI,文献DOI怎么找? 2410606
邀请新用户注册赠送积分活动 1403044
关于科研通互助平台的介绍 1376758