SDN/NFV-based framework for autonomous defense against slow-rate DDoS attacks by using reinforcement learning

计算机科学 服务拒绝攻击 强化学习 灵活性(工程) 软件定义的网络 计算机安全 网络安全 适应(眼睛) 网络管理 入侵检测系统 网络功能虚拟化 互联网 计算机网络 人工智能 操作系统 云计算 光学 物理 统计 数学
作者
Noe M. Yungaicela-Naula,Cesar Vargas‐Rosales,Jesús Arturo Pérez Díaz
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:149: 637-649 被引量:11
标识
DOI:10.1016/j.future.2023.08.007
摘要

The unforeseen and skyrocketed shift in the number of connections to the Internet during the last years has created vast and critical vulnerabilities in networks that cybercriminals have quickly seized to launch high-volume DDoS attacks. Existing tools, such as advanced firewalls or intrusion prevention systems (IPS), cannot handle such an elevated volume of attacks because these solutions are dependent on humans. Therefore, adaptation of the current network security solutions to automated ones is more significant than ever to foster the development of the zero-touch networks and service management (ZSM) paradigm. Building on our preliminary work in this field, in this study, we provide a software-defined networking (SDN)-based framework that automates the detection and mitigation of slow-rate DDoS attacks. The framework uses deep learning (DL) to detect attacks and reinforcement learning (RL) to mitigate them. Furthermore, a network function virtualization (NFV)-assisted moving target defense (MTD) mechanism is included to amplify the effectiveness and flexibility of the solution. The framework is tested on a simulated network using open-source tools, namely Open Network Operating System (ONOS), Containernet, Apache Web Server, and Docker. The source code of a prototype of the framework is shared, which can be used and improved by interested researchers. Finally, the experimental results demonstrate that RL agents learn optimal DDoS mitigation policies in different scenarios and that they quickly adapt to new conditions that vary in short periods of time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
达达利亚完成签到,获得积分10
1秒前
1秒前
123完成签到,获得积分20
1秒前
Akim应助guozizi采纳,获得10
1秒前
吾将上下而求索完成签到,获得积分10
2秒前
2秒前
飞飞发布了新的文献求助10
2秒前
lwq1994发布了新的文献求助20
3秒前
3秒前
3秒前
达达利亚发布了新的文献求助10
3秒前
快乐科研发布了新的文献求助10
4秒前
研友_VZG7GZ应助gro_ele采纳,获得10
4秒前
充电宝应助yankai采纳,获得30
5秒前
6秒前
6秒前
11发布了新的文献求助10
6秒前
6秒前
高高发布了新的文献求助10
7秒前
jjj应助qq采纳,获得20
7秒前
7秒前
7秒前
8秒前
Yimi完成签到,获得积分10
9秒前
9秒前
10秒前
CHENCHEN完成签到,获得积分10
10秒前
11秒前
帅关发布了新的文献求助10
11秒前
12秒前
12秒前
hantuo发布了新的文献求助10
12秒前
LFC发布了新的文献求助10
13秒前
13秒前
科研韭菜发布了新的文献求助10
14秒前
充电宝应助jingyu841123采纳,获得10
16秒前
dearcih完成签到,获得积分10
17秒前
17秒前
18秒前
yankai发布了新的文献求助30
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969513
求助须知:如何正确求助?哪些是违规求助? 3514327
关于积分的说明 11173617
捐赠科研通 3249672
什么是DOI,文献DOI怎么找? 1794973
邀请新用户注册赠送积分活动 875537
科研通“疑难数据库(出版商)”最低求助积分说明 804836