Heterogeneity analysis of factors influencing CO2 emissions: The role of human capital, urbanization, and FDI

城市化 外商直接投资 人口 人力资本 驱动因素 控制变量 经济 地理 经济增长 中国 宏观经济学 数学 统计 社会学 人口学 考古
作者
Chien‐Chiang Lee,Yanan Zhao
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:185: 113644-113644 被引量:28
标识
DOI:10.1016/j.rser.2023.113644
摘要

Reducing carbon dioxide (CO2) emissions is critical to combating global warming and achieving sustainable global economic development. This research combines the stochastic effects regression (STIRPAT) framework and a finite mixture model (FMM) with concomitant variables to investigate the influencing factors and heterogeneity characteristics of CO2 emissions in 96 countries between 2000 and 2020. The findings of the study are as follows. First, the full-sample regression results show that an increase of population aggravates CO2 emissions, the impact of affluence on CO2 emissions exhibits an inverted U-shape trend, and technology significantly improves CO2 emissions. Second, the samples were divided into three groups based on FMMnamed group A, group B and group C. In the three groups, he impacts of affluence and technology on CO2 affluence and technology have different effects on CO2 emissions, but a greater population size significantly raises CO2 emissions. Third, this study presents human capital, urbanization, and foreign direct investment (FDI) as concomitant variables to group the models objectively. The coefficient of the concomitant variable is positive, indicating that the differences among groups A, B, and C can be explained by said variables. During the period from 2000 to 2020, the group transformation of 16 countries is mainly due to the promotion of human capital, urbanization, and FDI. Reducing CO2 emissions is a global action that requires the joint efforts of all countries. Therefore, it is important to control the rate of population growth, increase the level of economic development, and accelerate the development of technologies, depending on the characteristics of different countries. The role of human capital, urbanization transition and FDI in promoting CO2 reduction should be fully utilized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助口口采纳,获得10
刚刚
家向松完成签到,获得积分10
1秒前
高兴的曼卉完成签到,获得积分10
1秒前
胡图图完成签到,获得积分10
2秒前
PHW完成签到,获得积分10
2秒前
文龙完成签到 ,获得积分10
3秒前
zyx发布了新的文献求助10
3秒前
Owen应助糊涂的芷天采纳,获得10
5秒前
马瑞完成签到,获得积分10
6秒前
简.....完成签到,获得积分10
6秒前
6秒前
8秒前
栗子应助臭图图采纳,获得10
11秒前
123发布了新的文献求助10
11秒前
XY完成签到,获得积分10
15秒前
马瑞发布了新的文献求助10
16秒前
不配.应助zyx采纳,获得20
16秒前
16秒前
称心紊完成签到,获得积分10
17秒前
18秒前
善学以致用应助XY采纳,获得10
18秒前
bkagyin应助科研通管家采纳,获得50
20秒前
JamesPei应助科研通管家采纳,获得10
20秒前
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
完美世界应助科研通管家采纳,获得10
20秒前
苹果应助科研通管家采纳,获得30
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
不戴眼镜的眼镜王蛇完成签到,获得积分10
21秒前
思源应助科研通管家采纳,获得10
21秒前
重要迎蕾发布了新的文献求助10
21秒前
苹果应助科研通管家采纳,获得30
21秒前
ranqi应助科研通管家采纳,获得10
21秒前
21秒前
Akim应助科研通管家采纳,获得10
21秒前
打打应助科研通管家采纳,获得10
22秒前
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
22秒前
lruri张关注了科研通微信公众号
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137238
求助须知:如何正确求助?哪些是违规求助? 2788358
关于积分的说明 7785777
捐赠科研通 2444399
什么是DOI,文献DOI怎么找? 1299897
科研通“疑难数据库(出版商)”最低求助积分说明 625650
版权声明 601023