Partitioning multi-layer edge network for neural network collaborative computing

计算机科学 云计算 GSM演进的增强数据速率 边缘计算 边缘设备 人工神经网络 分布式计算 分拆(数论) 人工智能 组合数学 数学 操作系统
作者
Qiang Li,Ming-Tuo Zhou,Tian-Feng Ren,Chunxiao Jiang,Yong Chen
出处
期刊:Eurasip Journal on Wireless Communications and Networking [Springer Nature]
卷期号:2023 (1) 被引量:1
标识
DOI:10.1186/s13638-023-02284-x
摘要

Abstract There is a trend to deploy neural network on edge devices in recent years. While the mainstream of research often concerns with single edge device processing and edge-cloud two-layer neural network collaborative computing, in this paper, we propose partitioning multi-layer edge network for neural network collaborative computing. With the proposed method, sub-models of neural network are deployed on multi-layer edge devices along the communication path from end users to cloud. Firstly, we propose an optimal path selection method to form a neural network collaborative computing path with lowest communication overhead. Secondly, we establish a time-delay optimization mathematical model to evaluate the effects of different partitioning solutions. To find the optimal partition solution, an ordered elitist genetic algorithm (OEGA) is proposed. The experimental results show that, compared with traditional cloud computing, single-device edge computing and edge-cloud collaborative computing, the proposed multi-layer edge network collaborative computing has a smaller runtime delay with limited bandwidth resources, and because of the pipeline computing characteristics, the proposed method has a better response speed when processing large number of requests. Meanwhile, the OEGA algorithm has better performance than conventional methods, and the optimized partitioning method outperforms other methods like random and evenly partition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wududu完成签到,获得积分10
刚刚
Hedone发布了新的文献求助30
刚刚
1秒前
宋嘉新发布了新的文献求助10
4秒前
4秒前
zhangwei应助梓ccc采纳,获得10
5秒前
奋斗夏真完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
7秒前
缓慢小熊猫完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
Jase发布了新的文献求助10
9秒前
缓慢冬莲完成签到,获得积分10
10秒前
10秒前
10秒前
飞哥发布了新的文献求助10
12秒前
奋斗夏真发布了新的文献求助10
12秒前
woyufengtian完成签到,获得积分10
13秒前
风中画板完成签到,获得积分10
13秒前
minrui发布了新的文献求助10
13秒前
儒雅的翎完成签到,获得积分10
14秒前
15秒前
15秒前
乔宇发布了新的文献求助10
16秒前
16秒前
17秒前
动人的蝴蝶完成签到,获得积分20
19秒前
852应助自然的钻石采纳,获得10
20秒前
Haisenky发布了新的文献求助10
20秒前
天天快乐应助WJ1989采纳,获得10
20秒前
20秒前
雪球发布了新的文献求助10
21秒前
科研通AI2S应助体贴的代真采纳,获得10
22秒前
木子水告完成签到,获得积分10
22秒前
Yeah完成签到 ,获得积分10
23秒前
23秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147903
求助须知:如何正确求助?哪些是违规求助? 2798930
关于积分的说明 7832525
捐赠科研通 2455943
什么是DOI,文献DOI怎么找? 1307025
科研通“疑难数据库(出版商)”最低求助积分说明 627966
版权声明 601587