清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

[Identification model of tooth number abnormalities on pediatric panoramic radiographs based on deep learning].

医学 恒牙 牙科 射线照相术 乳牙 异常 口腔正畸科 放射科 精神科
作者
Xia Zeng,Bin Xia,Zuoliang Cao,T. Y.,Meihong Xu,Zheng Xu,H L Bai,Peng Ding,J X Zhu
出处
期刊:PubMed 卷期号:58 (11): 1139-1145
标识
DOI:10.3760/cma.j.cn112144-20230831-00128
摘要

Objective: To identify tooth number abnormalities on pediatric panoramic radiographs based on deep learning. Methods: Eight hundred panoramic radiographs of children aged 4 to 11 years meeting the inclusion and exclusion criteria were selected and randomly assigned by writing programs in Python (version 3.9) to the training set (480 images), verification set (160 images) and internal test set (160 images), taken in Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology between November 2012 to August 2020. And all panoramic radiographs of children aged 4 to 11 years taken in the First Outpatient Department of Peking University School and Hospital of Stomatology from June 2022 to December 2022 were collected as the external test set (907 images). All of the 1 707 images were obtained by operators to determine the outline and to label the tooth position of each deciduous tooth, permanent tooth, permanent tooth germ and additional tooth. The deep learning model with ResNet-50 as the backbone network was trained on the training set, validated on the verification set, tested on the internal test set and external test set. The images of test sets were divided into two categories according to whether there was abnormality of tooth number, to calculate sensitivity, specificity, positive predictive value and negative predictive value, and then divided into four types of extra teeth and missing permanent teeth both existed, extra teeth existed only, missing permanent teeth existed only, and normal teeth number, to calculate Kappa values. Results: The sensitivity, specificity, positive predictive value and negative predictive value were 98.0%, 98.3%, 99.0% and 96.7% in the internal test set, and 97.1%, 98.4%, 91.9% and 99.5% in the external test set respectively, according to whether there was abnormality of tooth number. While images were divided into four types, the Kappa value obtained in the internal test set was 0.886, and that in the external test set was 0.912. Conclusions: In this study, a deep learning-based model for identifying abnormal tooth number of children was developed, which could identify the position of additional teeth and output the position of missing permanent teeth on the basis of identifying normal deciduous and permanent teeth and permanent tooth germs on panoramic radiographs, so as to assist in diagnosing tooth number abnormalities.目的: 基于深度学习技术识别儿童曲面体层X线片(以下简称曲面体层片)中的牙齿数目异常,提高临床医师工作效率,减少误诊与漏诊。 方法: 从北京大学口腔医学院·口腔医院儿童口腔科2012年11月至2020年8月间拍摄的符合纳入和排除标准的曲面体层片中抽取800张4~11岁儿童的曲面体层片,使用Python(3.9版本)编写程序随机分配为训练集(480张图像)、验证集(160张图像)和内部测试集(160张图像);并收集北京大学口腔医学院·口腔医院第一门诊部连续半年内拍摄的全部4~11岁儿童曲面体层片,共计1 707张图像由医师阅片确定每颗乳牙、恒牙、恒牙胚和额外牙的轮廓并标识牙位。使用训练集训练以ResNet-50为骨干网络的深度学习模型,在验证集中对模型进行微调,通过内部测试集和外部测试集评估模型性能,根据有无牙齿数目异常分为两类计算灵敏度、特异度、阳性预测值和阴性预测值,再分为同时存在额外牙与恒牙缺失、仅存在额外牙、仅存在恒牙缺失、牙齿数目正常四类计算Kappa值。 结果: 有无牙齿数目异常两类图像在内部测试集中的灵敏度、特异度、阳性预测值和阴性预测值分别为98.0%、98.3%、99.0%、96.7%,外部测试集中的灵敏度、特异度、阳性预测值和阴性预测值分别为97.1%、98.4%、91.9%、99.5%。牙齿数目正常、同时存在额外牙与恒牙缺失、仅存在额外牙、仅存在恒牙缺失四类图像在内部测试集中获得的Kappa值为0.886,在外部测试集中获得的Kappa值为0.912。 结论: 本研究开发了基于深度学习的儿童牙齿数目异常识别模型,其能在识别儿童曲面体层片正常乳恒牙及恒牙胚的基础上,确定额外牙的位置并输出缺失恒牙的牙位,从而辅助诊断有无牙齿数目异常。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
量子星尘发布了新的文献求助50
15秒前
花园里的蒜完成签到 ,获得积分0
37秒前
科研通AI6应助科研通管家采纳,获得10
41秒前
42秒前
loen完成签到,获得积分10
47秒前
多亿点完成签到 ,获得积分10
1分钟前
shuang完成签到 ,获得积分10
1分钟前
Ava应助michael_suo采纳,获得10
1分钟前
1分钟前
husi发布了新的文献求助10
1分钟前
1分钟前
husi完成签到 ,获得积分20
1分钟前
在水一方应助我爱读文献采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
michael_suo发布了新的文献求助10
2分钟前
michael_suo完成签到,获得积分10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
爱吃皮囊的大馋虫完成签到 ,获得积分10
2分钟前
大医仁心完成签到 ,获得积分10
2分钟前
馆长举报i beLIeVe求助涉嫌违规
3分钟前
迷茫的一代完成签到,获得积分10
3分钟前
馆长举报小黄瓜896求助涉嫌违规
3分钟前
馆长举报kkkkk求助涉嫌违规
3分钟前
超级兵12完成签到,获得积分10
3分钟前
程小柒完成签到 ,获得积分10
3分钟前
馆长举报Yoli求助涉嫌违规
4分钟前
馆长举报欢喜的海求助涉嫌违规
4分钟前
lei029发布了新的文献求助30
4分钟前
馆长举报耶耶耶y求助涉嫌违规
4分钟前
Wenjie_Xin完成签到,获得积分10
4分钟前
馆长举报友好慕卉求助涉嫌违规
4分钟前
馆长举报墨尘求助涉嫌违规
4分钟前
lei029完成签到,获得积分10
5分钟前
5分钟前
lei029发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596533
求助须知:如何正确求助?哪些是违规求助? 4008426
关于积分的说明 12409207
捐赠科研通 3687443
什么是DOI,文献DOI怎么找? 2032420
邀请新用户注册赠送积分活动 1065646
科研通“疑难数据库(出版商)”最低求助积分说明 950967