[Identification model of tooth number abnormalities on pediatric panoramic radiographs based on deep learning].

医学 恒牙 牙科 射线照相术 乳牙 异常 口腔正畸科 放射科 精神科
作者
Xia Zeng,Bin Xia,Zuoliang Cao,T Y,Meihong Xu,Zheng Xu,H L Bai,Peng Ding,J X Zhu
出处
期刊:PubMed 卷期号:58 (11): 1139-1145
标识
DOI:10.3760/cma.j.cn112144-20230831-00128
摘要

Objective: To identify tooth number abnormalities on pediatric panoramic radiographs based on deep learning. Methods: Eight hundred panoramic radiographs of children aged 4 to 11 years meeting the inclusion and exclusion criteria were selected and randomly assigned by writing programs in Python (version 3.9) to the training set (480 images), verification set (160 images) and internal test set (160 images), taken in Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology between November 2012 to August 2020. And all panoramic radiographs of children aged 4 to 11 years taken in the First Outpatient Department of Peking University School and Hospital of Stomatology from June 2022 to December 2022 were collected as the external test set (907 images). All of the 1 707 images were obtained by operators to determine the outline and to label the tooth position of each deciduous tooth, permanent tooth, permanent tooth germ and additional tooth. The deep learning model with ResNet-50 as the backbone network was trained on the training set, validated on the verification set, tested on the internal test set and external test set. The images of test sets were divided into two categories according to whether there was abnormality of tooth number, to calculate sensitivity, specificity, positive predictive value and negative predictive value, and then divided into four types of extra teeth and missing permanent teeth both existed, extra teeth existed only, missing permanent teeth existed only, and normal teeth number, to calculate Kappa values. Results: The sensitivity, specificity, positive predictive value and negative predictive value were 98.0%, 98.3%, 99.0% and 96.7% in the internal test set, and 97.1%, 98.4%, 91.9% and 99.5% in the external test set respectively, according to whether there was abnormality of tooth number. While images were divided into four types, the Kappa value obtained in the internal test set was 0.886, and that in the external test set was 0.912. Conclusions: In this study, a deep learning-based model for identifying abnormal tooth number of children was developed, which could identify the position of additional teeth and output the position of missing permanent teeth on the basis of identifying normal deciduous and permanent teeth and permanent tooth germs on panoramic radiographs, so as to assist in diagnosing tooth number abnormalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大力超大力完成签到 ,获得积分10
1秒前
李爱国应助紫麒麟采纳,获得10
1秒前
1秒前
聪明水之发布了新的文献求助10
2秒前
2秒前
海拉鲁电焊大师完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
ZhouZhou发布了新的文献求助10
3秒前
赘婿应助bjjtdx1997采纳,获得10
3秒前
3秒前
上官若男应助zxc采纳,获得10
3秒前
4秒前
kkk发布了新的文献求助10
4秒前
强小强完成签到,获得积分10
5秒前
一口发布了新的文献求助10
5秒前
5秒前
5秒前
研友_VZG7GZ应助呼叫554采纳,获得10
6秒前
廖紊发布了新的文献求助10
6秒前
小二郎应助100采纳,获得10
7秒前
汪丽娜发布了新的文献求助10
7秒前
俏皮道之发布了新的文献求助10
7秒前
7秒前
邓文博完成签到 ,获得积分20
8秒前
木子完成签到,获得积分10
8秒前
8秒前
cxt发布了新的文献求助10
8秒前
十三发布了新的文献求助10
9秒前
10秒前
Ccc发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
桐桐应助wade采纳,获得10
11秒前
怡然凝云发布了新的文献求助10
11秒前
zeng发布了新的文献求助10
11秒前
wenxiaonuan完成签到 ,获得积分10
11秒前
华仔应助苗烨霖采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513178
求助须知:如何正确求助?哪些是违规求助? 4607547
关于积分的说明 14505663
捐赠科研通 4543090
什么是DOI,文献DOI怎么找? 2489360
邀请新用户注册赠送积分活动 1471340
关于科研通互助平台的介绍 1443362