亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

[Identification model of tooth number abnormalities on pediatric panoramic radiographs based on deep learning].

医学 恒牙 牙科 射线照相术 乳牙 异常 口腔正畸科 放射科 精神科
作者
Xia Zeng,Bin Xia,Zuoliang Cao,T Y,Meihong Xu,Zheng Xu,H L Bai,Peng Ding,J X Zhu
出处
期刊:PubMed 卷期号:58 (11): 1139-1145
标识
DOI:10.3760/cma.j.cn112144-20230831-00128
摘要

Objective: To identify tooth number abnormalities on pediatric panoramic radiographs based on deep learning. Methods: Eight hundred panoramic radiographs of children aged 4 to 11 years meeting the inclusion and exclusion criteria were selected and randomly assigned by writing programs in Python (version 3.9) to the training set (480 images), verification set (160 images) and internal test set (160 images), taken in Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology between November 2012 to August 2020. And all panoramic radiographs of children aged 4 to 11 years taken in the First Outpatient Department of Peking University School and Hospital of Stomatology from June 2022 to December 2022 were collected as the external test set (907 images). All of the 1 707 images were obtained by operators to determine the outline and to label the tooth position of each deciduous tooth, permanent tooth, permanent tooth germ and additional tooth. The deep learning model with ResNet-50 as the backbone network was trained on the training set, validated on the verification set, tested on the internal test set and external test set. The images of test sets were divided into two categories according to whether there was abnormality of tooth number, to calculate sensitivity, specificity, positive predictive value and negative predictive value, and then divided into four types of extra teeth and missing permanent teeth both existed, extra teeth existed only, missing permanent teeth existed only, and normal teeth number, to calculate Kappa values. Results: The sensitivity, specificity, positive predictive value and negative predictive value were 98.0%, 98.3%, 99.0% and 96.7% in the internal test set, and 97.1%, 98.4%, 91.9% and 99.5% in the external test set respectively, according to whether there was abnormality of tooth number. While images were divided into four types, the Kappa value obtained in the internal test set was 0.886, and that in the external test set was 0.912. Conclusions: In this study, a deep learning-based model for identifying abnormal tooth number of children was developed, which could identify the position of additional teeth and output the position of missing permanent teeth on the basis of identifying normal deciduous and permanent teeth and permanent tooth germs on panoramic radiographs, so as to assist in diagnosing tooth number abnormalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠的惮发布了新的文献求助10
2秒前
CodeCraft应助水水水采纳,获得10
4秒前
kekao发布了新的文献求助10
21秒前
上官若男应助Hayward采纳,获得10
30秒前
香蕉觅云应助选波采纳,获得10
31秒前
33秒前
34秒前
思源应助科研通管家采纳,获得10
34秒前
共享精神应助科研通管家采纳,获得10
34秒前
清飏应助科研通管家采纳,获得30
34秒前
kekao完成签到,获得积分10
35秒前
水水水发布了新的文献求助10
39秒前
bkagyin应助gdpu_omics采纳,获得10
51秒前
57秒前
58秒前
小不点完成签到,获得积分10
58秒前
tlj0808发布了新的文献求助20
1分钟前
选波发布了新的文献求助10
1分钟前
今后应助小不点采纳,获得10
1分钟前
小袁完成签到 ,获得积分10
1分钟前
AU完成签到 ,获得积分10
2分钟前
顺心蜜粉完成签到,获得积分10
2分钟前
2分钟前
TsuKe完成签到,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
顺心蜜粉发布了新的文献求助100
2分钟前
完美世界应助JJS采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Hayward发布了新的文献求助10
2分钟前
2分钟前
tlj0808发布了新的文献求助10
2分钟前
哲别发布了新的文献求助10
2分钟前
ding应助Hayward采纳,获得30
2分钟前
桃桃发布了新的文献求助10
3分钟前
3分钟前
3分钟前
gdpu_omics发布了新的文献求助10
3分钟前
JJS发布了新的文献求助10
3分钟前
JJS完成签到,获得积分10
3分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644645
求助须知:如何正确求助?哪些是违规求助? 4764877
关于积分的说明 15025423
捐赠科研通 4803014
什么是DOI,文献DOI怎么找? 2567817
邀请新用户注册赠送积分活动 1525416
关于科研通互助平台的介绍 1484958