Improving treatment precision in head and neck BNCT: delineation of oral and pharyngeal mucosa based on an MRI Atlas for standardized applications

轮廓 医学 地图集(解剖学) 核医学 头颈部癌 头颈部 放射治疗 口腔粘膜 放射科 病理 外科 解剖 工程制图 工程类
作者
Katsumi Hirose,Ryohei Kato,Mariko Sato,Koji Ichise,Mitsuki Tanaka,Ichitaro Fujioka,Hideo Kawaguchi,Yoshiomi Hatayama,Masahiko Aoki,Yoshihiro Takai
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:2
标识
DOI:10.1101/2023.10.26.23297644
摘要

Abstract Background and purpose Boron neutron capture therapy (BNCT) has been routinely practiced for treatment of head and neck cancer in Japan. However, differences in contouring the oral and pharyngeal mucosa can lead to discrepancies in treatment. This study aimed to introduce a standardized approach using an MRI-based atlas, aiming to minimize inter-observer error and improve dose precision. Materials and Methods An MRI atlas of the head and neck mucosa was developed using water/fat-separated images from a healthy man. Using CT images from three patients, seven radiation oncologists performed contouring of the head and neck mucosa twice over a 3-week period. Contouring was first performed using CT alone, then later using fused T2-weighted images with the mucosal atlas for guidance. Contouring errors were assessed and their impacts on tumor dose were evaluated. Results The introduction of the MRI-based mucosal atlas significantly reduced inter-observer variation in mucosal volume (the coefficient of variation, abbreviated with COV, decreased from 0.61 with CT alone to 0.21 with the MRI atlas; p=0.003). Moreover, the atlas resulted in improved contour homology among observers and reduced variations in tumor dose. For all cases, COVs for maximum, mean, and minimum tumor doses were all below 5%. Conclusion Utilizing an MRI-based mucosal atlas in BNCT contouring can significantly reduce inter-observer variation, improve contour homology, and decrease variations in tumor dose. These findings suggest strong potential for standardizing and enhancing the quality of BNCT for head and neck cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
2秒前
3秒前
left_right发布了新的文献求助10
3秒前
3秒前
青年才俊发布了新的文献求助10
4秒前
澡雪完成签到,获得积分10
4秒前
嘎嘎嘎完成签到,获得积分10
6秒前
Ania99发布了新的文献求助10
7秒前
脑洞疼应助yy采纳,获得10
7秒前
研友_VZG7GZ应助qxm采纳,获得10
7秒前
YiZT发布了新的文献求助10
8秒前
9秒前
left_right完成签到,获得积分10
11秒前
爱听歌的大地完成签到 ,获得积分10
14秒前
14秒前
xhh发布了新的文献求助10
14秒前
幸福的含雁完成签到,获得积分10
16秒前
波谷完成签到,获得积分10
17秒前
17秒前
滟滟完成签到,获得积分10
17秒前
刘荣圣发布了新的文献求助10
17秒前
Deena发布了新的文献求助10
17秒前
chen完成签到,获得积分10
19秒前
yznfly应助老仙翁采纳,获得200
19秒前
yy发布了新的文献求助10
20秒前
20秒前
Elk完成签到,获得积分10
20秒前
huanhuan发布了新的文献求助10
21秒前
积极雨雪完成签到,获得积分10
22秒前
zzznznnn发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
机灵静槐发布了新的文献求助30
24秒前
yy完成签到,获得积分10
26秒前
28秒前
鱼鱼完成签到 ,获得积分10
29秒前
neuarcher完成签到,获得积分10
30秒前
研友_LN7AOn完成签到,获得积分10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604088
求助须知:如何正确求助?哪些是违规求助? 4688919
关于积分的说明 14857074
捐赠科研通 4696569
什么是DOI,文献DOI怎么找? 2541150
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851