材料科学
晶界
成核
降水
过冷
延展性(地球科学)
相(物质)
复合材料
表面能
位错
冶金
蠕动
微观结构
热力学
物理
化学
有机化学
气象学
作者
Peng Jin,Junjie Zhou,Jingnan Zhou,Yibo Liu,Qing Sun
标识
DOI:10.1016/j.compositesb.2023.111078
摘要
An Al–Cu matrix composite reinforced with uniformly-distributed micron- and nano-double-sized TiC particles (MNDS-TiCps) was successfully fabricated using a wire and arc additive manufacturing (WAAM) process. The combined effect of the MNDS-TiCps on the precipitation of the θ″ phase, the structural evolution of the grain boundaries, and solidification dynamics of the deposited Al–Cu matrix composites were subsequently investigated. The micron-sized TiC particles in the molten pool generate nucleation undercooling (ΔTnu, ∼0.32 K) which inhibits grain boundary segregation due to constitutional undercooling and promotes the redistribution of the Cu solute in the Al matrix. The phase composition at the grain boundaries changes from θ-Al2Cu to α-Al + θ-Al2Cu and the non-coherent interface between the α+θ transition zone and θ grain boundary is transformed into a coherent interface between the α+θ grain boundary and Al matrix, i.e. (211)θ-Al2Cu//(111)Al. The decrease in free energy within the Al matrix provides energy to facilitate the growth of nuclei on the surface of the nano-sized particles. A semi-coherent interface is thus detected between the TiC and precipitates, characterized by a crystal orientation relationship of (200)TiC//(310)θ″-Al2Cu. The dislocations that provide pipe-diffusion paths for solute Cu constitute a driving force that coarsens the precipitates, promoting the precipitation of θ″ precipitates. Multi-site co-deformation combined with dislocation increment inhibits stress damage to the micro-interface. The strength and elongation increase by 51.0 % and 118 %, respectively, compared to specimens without TiC. This work provides a novel perspective for tailoring WAAM-deposited Al–Cu alloys by achieving favorable structural evolution in the grain boundaries, inducing the precipitation of precipitates, and yielding outstanding synergy between ductility and strength.
科研通智能强力驱动
Strongly Powered by AbleSci AI