Predicting Function of Class II Diterpene Cyclases in Bacterial Species Using a Sequence Similarity Network

二萜 计算生物学 生物 天然产物 细菌 功能(生物学) 生物化学 遗传学
作者
Cody Lemke,Ryan S. Nett
出处
期刊:The FASEB Journal [Wiley]
卷期号:31 (S1)
标识
DOI:10.1096/fasebj.31.1_supplement.766.20
摘要

Diterpenoids are natural products commonly derived from plants as well as bacteria and fungi. Many of these secondary metabolites have been shown to possess anti‐inflammatory, antimicrobial, insecticidal, and even antitumor properties making them of great interest in the pharmaceutical and agricultural industries. However, due to their complex structure, metabolic engineering is typically a necessary means of producing these compounds. For this reason, it is important to understand the function and mechanisms of the enzymes that often perform the committed step in diterpenoid biosynthesis, class II diterpene cyclases (DTCs). To better understand the breadth and diversity of bacterial DTCs, a protein sequence similarity network (SSN) was constructed from a previously characterized DTC involved in the synthesis of the plant hormone, gibberellin. This network established a representation of homology between putative DTCs in bacteria that could potentially be used to predict function of uncharacterized genes. Interestingly, this method also demonstrated that some bacterial DTCs have similarity to plant and fungal DTCs, suggesting a possible evolutionary relationship. To assess the SSN results, we cloned and expressed several putative bacterial DTCs in our metabolic engineering system, and in doing so have confirmed their functionality as DTCs. These newly characterized enzymes exhibit a wide range of functionality, and active site analysis suggests that only a few key amino acids may be involved in determining product outcome. Thus, our results demonstrate the efficacy of SSNs for identifying potential DTCs, along with providing insight into the mechanisms underlying the biochemical diversity exhibited by bacterial DTCs. Support or Funding Information Laboratory of Reuben Peters, Iowa State University

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
melenda发布了新的文献求助10
刚刚
zxh完成签到,获得积分10
2秒前
allegiance完成签到 ,获得积分10
2秒前
盼盼发布了新的文献求助10
2秒前
CCLD发布了新的文献求助10
3秒前
常泽洋122完成签到,获得积分10
5秒前
大帅完成签到 ,获得积分10
8秒前
科研通AI5应助小于爱科研采纳,获得30
8秒前
Yuan完成签到,获得积分10
9秒前
经卿完成签到 ,获得积分10
10秒前
熠熠完成签到,获得积分10
11秒前
11秒前
Lazarus_x完成签到,获得积分10
11秒前
光亮的寻雪完成签到 ,获得积分10
13秒前
孤独听雨的猫完成签到 ,获得积分10
13秒前
14秒前
big佳发布了新的文献求助10
16秒前
刘闹闹完成签到 ,获得积分10
17秒前
NancyDee完成签到,获得积分10
18秒前
hmh135发布了新的文献求助10
19秒前
水哥完成签到 ,获得积分10
20秒前
JMchiefEditor完成签到,获得积分10
20秒前
xiaoguang li完成签到,获得积分0
21秒前
AirJia完成签到,获得积分10
22秒前
活泼蜡烛完成签到,获得积分10
22秒前
孟子豪完成签到,获得积分10
23秒前
tyj完成签到,获得积分10
24秒前
25秒前
悄悄完成签到,获得积分10
25秒前
勤劳绿毛龟完成签到,获得积分10
27秒前
大胆的自行车完成签到 ,获得积分10
28秒前
舒服的幻梅完成签到 ,获得积分10
29秒前
29秒前
lxy完成签到,获得积分10
30秒前
conanyangqun完成签到,获得积分10
30秒前
独特的凝云完成签到 ,获得积分10
31秒前
李凤凤完成签到 ,获得积分10
32秒前
修好世界完成签到,获得积分10
32秒前
222完成签到 ,获得积分10
34秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736779
求助须知:如何正确求助?哪些是违规求助? 3280670
关于积分的说明 10020421
捐赠科研通 2997407
什么是DOI,文献DOI怎么找? 1644533
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749656