Structure responsible for the superconducting state in La3Ni2O7 at high pressure and low temperature conditions

超导电性 正交晶系 四方晶系 凝聚态物理 相图 八面体 材料科学 晶体结构 相(物质) 环境压力 结晶学 化学 物理 热力学 有机化学
作者
Luhong Wang,Yan Li,Sheng‐Yi Xie,Fuyang Liu,Hualei Sun,Caoxin Huang,Yang Gao,Takeshi Nakagawa,Boyang Fu,Bo Dong,Zhenhui Cao,Runze Yu,Saori I. Kawaguchi,Hirokazu Kadobayashi,Meng Wang,Changqing Jin,Ho‐kwang Mao,Haozhe Liu
出处
期刊:Cornell University - arXiv 被引量:9
标识
DOI:10.48550/arxiv.2311.09186
摘要

Very recently, a new superconductor with Tc = 80 K was reported in nickelate (La3Ni2O7) at around 15 - 40 GPa conditions (Nature, 621, 493, 2023) [1], which is the second type of unconventional superconductor, beside the cuprates, with Tc above liquid nitrogen temperature. However, the phase diagram plotted in this report was mostly based on the transport measurement at low temperature and high pressure conditions, and the assumed corresponding X-ray diffraction (XRD) results was carried out at room temperature. This encouraged us to carry out in situ high pressure and low temperature synchrotron XRD experiments to determine which phase is responsible for the high Tc state. In addition to the phase transition from orthorhombic Amam structure to orthorhombic Fmmm structure, a tetragonal phase with space group of I4/mmm was discovered when the sample was compressed to 19 GPa at 40 K where the superconductivity takes palce in La3Ni2O7. The calculations based on this tetragonal structure reveal that the electronic states approached to the Fermi energy were mainly dominated by the eg orbitals (3dz2 and 3dx2-y2) of Ni atoms, which are located in the oxygen octahedral crystal field. The correlation between Tc and this structural evolution, especially Ni-O octahedra regularity and the in-plane Ni-O-Ni bonding angles, are analyzed. This work sheds new lights to identify what is the most likely phase responsible for superconductivity in the double layered nickelate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
成就梦松完成签到,获得积分10
刚刚
byyyy完成签到,获得积分10
刚刚
温暖的俊驰完成签到,获得积分10
1秒前
Isabel完成签到,获得积分10
1秒前
yx应助陈强采纳,获得30
2秒前
sokach发布了新的文献求助10
4秒前
缓慢荔枝发布了新的文献求助10
4秒前
123发布了新的文献求助10
5秒前
天御雪完成签到,获得积分10
5秒前
gen关闭了gen文献求助
5秒前
5秒前
科研通AI5应助oldlee采纳,获得10
6秒前
6秒前
MADKAI发布了新的文献求助10
6秒前
哈哈悦完成签到,获得积分10
6秒前
赘婿应助duoduozs采纳,获得10
6秒前
kai完成签到,获得积分10
7秒前
7秒前
情怀应助xhy采纳,获得10
7秒前
整齐的灭绝完成签到 ,获得积分10
8秒前
充电宝应助船舵采纳,获得10
8秒前
lqphysics完成签到,获得积分10
8秒前
8秒前
小小完成签到 ,获得积分10
9秒前
320me666完成签到,获得积分10
10秒前
10秒前
velpro发布了新的文献求助10
11秒前
科研通AI5应助masu采纳,获得10
11秒前
小狸跟你拼啦完成签到,获得积分10
11秒前
寂寞的灵发布了新的文献求助10
11秒前
12秒前
honey完成签到,获得积分10
12秒前
白宝宝北北白应助eee采纳,获得10
12秒前
gcc应助HZW采纳,获得20
13秒前
13秒前
完美世界应助Hu111采纳,获得10
14秒前
khaosyi完成签到 ,获得积分10
15秒前
哇哈哈完成签到,获得积分10
16秒前
16秒前
buno应助啦啦采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672