SCcheck: A Novel Graph-driven and Attention-enabled Smart Contract Vulnerability Detection Framework for Web 3.0 Ecosystem

计算机科学 数据流 利用 理论计算机科学 图形 计算机安全 程序设计语言
作者
Yuanlong Cao,Fan Jiang,Jianmao Xiao,Shaolong Chen,Xun Shao,Celimuge Wu
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/tnse.2023.3324942
摘要

With the rapid progress of technology, Web 3.0 has emerged as a transformative force in the digital realm. It is characterized by decentralization, user-centric data ownership, and the implementation of cryptographic techniques. Smart contracts, as a core component of Web 3.0, play a pivotal role in driving its evolution by enabling novel functionalities and various application. However, given the substantial financial significance of smart contracts and their inherent transparency, the accessibility of their source code to all opens potential avenues for attackers to identify and exploit vulnerabilities. Therefore, the detection of security vulnerabilities in smart contracts has become significantly important. Existing smart contract vulnerability detection tools mostly rely on expert-defined rules, leading to high false positive rates. To address this problem, this paper proposes an efficient and automated framework that combines Graph and Attention for detecting smart contract vulnerabilities. This framework takes into account the code structure of smart contracts, extracts nodes, and constructs a contract graph, utilizing dataflow to represent the different semantics of variable nodes at different locations. Additionally, a bidirectional multilayer Transformer framework is constructed and trained with our dataset, utilizing the information from the nodes. The framework achieves state-of-the-art levels of $Accuracy$ 92.72%, $Recall$ 82.81%, and $F1_{score}$ 87.54%, respectively. These results show that our framework can effectively detect security vulnerabilities in smart contracts and has the potential to improve their security.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LZJ完成签到,获得积分10
刚刚
和谐乌龟完成签到,获得积分10
1秒前
guanzhuang完成签到,获得积分10
2秒前
大神水瓶座完成签到,获得积分10
2秒前
能干的函发布了新的文献求助10
3秒前
3秒前
4秒前
叮当发布了新的文献求助50
4秒前
谨慎发卡发布了新的文献求助10
4秒前
4秒前
5秒前
小猪完成签到 ,获得积分10
6秒前
6秒前
7秒前
wwewew完成签到,获得积分10
8秒前
PhD-SCAU完成签到,获得积分10
8秒前
modesty发布了新的文献求助10
9秒前
Jenny完成签到,获得积分10
9秒前
开心尔芙完成签到,获得积分10
9秒前
响铃发布了新的文献求助10
10秒前
jackynl发布了新的文献求助10
11秒前
热情的明轩完成签到,获得积分10
11秒前
似风完成签到,获得积分10
11秒前
12秒前
13秒前
大胆绮兰发布了新的文献求助10
13秒前
tw007007完成签到,获得积分10
13秒前
Zero丶小瑞完成签到 ,获得积分10
13秒前
替我活着发布了新的文献求助10
13秒前
13秒前
14秒前
GGbound完成签到 ,获得积分10
15秒前
toda发布了新的文献求助10
16秒前
阿乐完成签到,获得积分20
16秒前
18秒前
函数完成签到 ,获得积分10
18秒前
搜集达人应助万事顺遂采纳,获得10
18秒前
18秒前
dyk完成签到,获得积分10
19秒前
阿乐发布了新的文献求助10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965897
求助须知:如何正确求助?哪些是违规求助? 3511264
关于积分的说明 11157003
捐赠科研通 3245841
什么是DOI,文献DOI怎么找? 1793159
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278