SCcheck: A Novel Graph-driven and Attention-enabled Smart Contract Vulnerability Detection Framework for Web 3.0 Ecosystem

计算机科学 数据流 利用 理论计算机科学 图形 计算机安全 程序设计语言
作者
Yuanlong Cao,Fan Jiang,Jianmao Xiao,Shaolong Chen,Xun Shao,Celimuge Wu
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/tnse.2023.3324942
摘要

With the rapid progress of technology, Web 3.0 has emerged as a transformative force in the digital realm. It is characterized by decentralization, user-centric data ownership, and the implementation of cryptographic techniques. Smart contracts, as a core component of Web 3.0, play a pivotal role in driving its evolution by enabling novel functionalities and various application. However, given the substantial financial significance of smart contracts and their inherent transparency, the accessibility of their source code to all opens potential avenues for attackers to identify and exploit vulnerabilities. Therefore, the detection of security vulnerabilities in smart contracts has become significantly important. Existing smart contract vulnerability detection tools mostly rely on expert-defined rules, leading to high false positive rates. To address this problem, this paper proposes an efficient and automated framework that combines Graph and Attention for detecting smart contract vulnerabilities. This framework takes into account the code structure of smart contracts, extracts nodes, and constructs a contract graph, utilizing dataflow to represent the different semantics of variable nodes at different locations. Additionally, a bidirectional multilayer Transformer framework is constructed and trained with our dataset, utilizing the information from the nodes. The framework achieves state-of-the-art levels of $Accuracy$ 92.72%, $Recall$ 82.81%, and $F1_{score}$ 87.54%, respectively. These results show that our framework can effectively detect security vulnerabilities in smart contracts and has the potential to improve their security.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萧水白应助Tutusamo采纳,获得10
1秒前
高高羊发布了新的文献求助10
2秒前
咕噜咕噜完成签到,获得积分10
2秒前
SciGPT应助guajiguaji采纳,获得10
3秒前
852应助深情未来采纳,获得10
4秒前
咕噜咕噜发布了新的文献求助20
5秒前
酷波er应助卓越采纳,获得10
6秒前
科研通AI2S应助饱满绮玉W采纳,获得10
6秒前
7秒前
淡然的曼岚完成签到,获得积分20
9秒前
博弈春秋应助缺粥采纳,获得50
9秒前
繁荣的莫言完成签到 ,获得积分10
11秒前
小黑驴完成签到 ,获得积分10
11秒前
大雄完成签到,获得积分20
12秒前
舒心的完成签到,获得积分10
13秒前
3s发布了新的文献求助10
13秒前
研友_VZG7GZ应助gank采纳,获得10
13秒前
我是老大应助guajiguaji采纳,获得10
15秒前
西瓜完成签到 ,获得积分10
16秒前
xiaojcom应助朴实的煎蛋采纳,获得20
16秒前
17秒前
暴躁的马里奥完成签到,获得积分10
17秒前
GEOPYJ完成签到,获得积分20
18秒前
19秒前
22发布了新的文献求助10
19秒前
toxin37完成签到,获得积分10
22秒前
桐桐应助manstar采纳,获得10
23秒前
23秒前
调研昵称发布了新的文献求助10
24秒前
wangzai111发布了新的文献求助10
24秒前
24秒前
阿网发布了新的文献求助10
25秒前
toxin37发布了新的文献求助30
26秒前
风中作画完成签到 ,获得积分20
26秒前
SciGPT应助guajiguaji采纳,获得10
26秒前
28秒前
28秒前
28秒前
29秒前
丘比特应助adoretheall采纳,获得10
30秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157189
求助须知:如何正确求助?哪些是违规求助? 2808483
关于积分的说明 7877835
捐赠科研通 2467029
什么是DOI,文献DOI怎么找? 1313118
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919