湍流
非线性系统
雷诺平均Navier-Stokes方程
滤波器(信号处理)
雷诺数
雷诺应力
人工神经网络
Kε湍流模型
应用数学
统计物理学
物理
算法
计算机科学
数学分析
数学
机械
人工智能
计算机视觉
量子力学
作者
Qiang Liu,Wei Zhu,Xiyu Jia,Feng Ma,Jun Wen,Yixiong Wu,Kuangqi Chen,Zhenhai Zhang,Shuang Wang
标识
DOI:10.1016/j.cma.2023.116543
摘要
The turbulent flow characteristics, such as its multiscale and nonlinear nature, make the solution to turbulent flow problems complex. To simplify these problems, traditional methods have employed simplifications, such as RANS and LES models for dealing with the multiscale aspect and linear approximation theories for dealing with the nonlinear aspect. We designed a multiscale and nonlinear turbulence characteristic extraction model using a graph neural network with spatial convolutions and nonlinear fitting capabilities. Unlike traditional methods, this model computes turbulence data directly without resorting to simplified formulas. The multiscale problem is addressed by an anisotropic filter operator, and the nonlinear problem is dealt with through nonlinear correlation and nonlinear activation functions. To enhance the training efficiency of the model, a single training framework was implemented. This framework allows models trained on turbulent data with different Reynolds numbers to be applied. The relative errors for the X-axis velocity (U), Y-axis velocity (V) and pressure (P) are 0.932 %, 1.020 % and 0.594 %, respectively, when using turbulence data with the Reynolds number (Re) of 5×105 as the training set. Using Re = 1 × 103 and Re = 5 × 105 as training data and Re = 1× 105 as test data, the relative errors for U, V and P were found to be 2.527 %, 6.284 % and 0.799 % (Re = 1× 105). The study also analysed the impact of the anisotropic filter operator and nonlinearity on turbulence simulation and found that both play a critical role in turbulence calculation. These experiments demonstrate that the multiscale nonlinear turbulence simulator has a high computational performance in turbulence calculation.
科研通智能强力驱动
Strongly Powered by AbleSci AI