The anisotropic graph neural network model with multiscale and nonlinear characteristic for turbulence simulation

湍流 非线性系统 雷诺平均Navier-Stokes方程 滤波器(信号处理) 雷诺数 雷诺应力 人工神经网络 Kε湍流模型 应用数学 统计物理学 物理 算法 计算机科学 数学分析 数学 机械 人工智能 计算机视觉 量子力学
作者
Qiang Liu,Wei Zhu,Xiyu Jia,Feng Ma,Jun Wen,Yixiong Wu,Kuangqi Chen,Zhenhai Zhang,Shuang Wang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:419: 116543-116543 被引量:1
标识
DOI:10.1016/j.cma.2023.116543
摘要

The turbulent flow characteristics, such as its multiscale and nonlinear nature, make the solution to turbulent flow problems complex. To simplify these problems, traditional methods have employed simplifications, such as RANS and LES models for dealing with the multiscale aspect and linear approximation theories for dealing with the nonlinear aspect. We designed a multiscale and nonlinear turbulence characteristic extraction model using a graph neural network with spatial convolutions and nonlinear fitting capabilities. Unlike traditional methods, this model computes turbulence data directly without resorting to simplified formulas. The multiscale problem is addressed by an anisotropic filter operator, and the nonlinear problem is dealt with through nonlinear correlation and nonlinear activation functions. To enhance the training efficiency of the model, a single training framework was implemented. This framework allows models trained on turbulent data with different Reynolds numbers to be applied. The relative errors for the X-axis velocity (U), Y-axis velocity (V) and pressure (P) are 0.932 %, 1.020 % and 0.594 %, respectively, when using turbulence data with the Reynolds number (Re) of 5×105 as the training set. Using Re = 1 × 103 and Re = 5 × 105 as training data and Re = 1× 105 as test data, the relative errors for U, V and P were found to be 2.527 %, 6.284 % and 0.799 % (Re = 1× 105). The study also analysed the impact of the anisotropic filter operator and nonlinearity on turbulence simulation and found that both play a critical role in turbulence calculation. These experiments demonstrate that the multiscale nonlinear turbulence simulator has a high computational performance in turbulence calculation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是蔡同学发布了新的文献求助10
4秒前
Ava应助燕海雪采纳,获得10
5秒前
科研通AI2S应助大力丹琴采纳,获得10
5秒前
今后应助刘YF采纳,获得10
6秒前
南有乔木完成签到,获得积分10
7秒前
tangnxf完成签到,获得积分10
7秒前
9秒前
秋心完成签到,获得积分10
11秒前
十一发布了新的文献求助10
12秒前
15秒前
内向忆南完成签到,获得积分10
15秒前
15秒前
良辰应助nininini采纳,获得10
17秒前
19秒前
CipherSage应助ccm采纳,获得10
23秒前
没有昵称完成签到 ,获得积分10
25秒前
良辰应助lingling采纳,获得10
26秒前
29秒前
31秒前
32秒前
共享精神应助小锦李采纳,获得10
33秒前
科研通AI2S应助MRCHONG采纳,获得10
33秒前
34秒前
36秒前
37秒前
NAN发布了新的文献求助10
37秒前
37秒前
JamesPei应助Edison采纳,获得10
38秒前
Allen发布了新的文献求助10
38秒前
38秒前
守墓人完成签到 ,获得积分10
39秒前
无情的冰香完成签到 ,获得积分10
40秒前
41秒前
haowu发布了新的文献求助10
41秒前
sean发布了新的文献求助10
43秒前
8R60d8应助科研通管家采纳,获得30
44秒前
小二郎应助科研通管家采纳,获得10
44秒前
xzy998应助科研通管家采纳,获得10
44秒前
8R60d8应助科研通管家采纳,获得10
45秒前
8R60d8应助科研通管家采纳,获得10
45秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161774
求助须知:如何正确求助?哪些是违规求助? 2813049
关于积分的说明 7898270
捐赠科研通 2472043
什么是DOI,文献DOI怎么找? 1316316
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129