The anisotropic graph neural network model with multiscale and nonlinear characteristic for turbulence simulation

湍流 非线性系统 雷诺平均Navier-Stokes方程 滤波器(信号处理) 雷诺数 雷诺应力 人工神经网络 Kε湍流模型 应用数学 统计物理学 物理 算法 计算机科学 数学分析 数学 机械 人工智能 计算机视觉 量子力学
作者
Qiang Liu,Wei Zhu,Xiyu Jia,Feng Ma,Jun Wen,Yixiong Wu,Kuangqi Chen,Zhenhai Zhang,Shuang Wang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:419: 116543-116543 被引量:1
标识
DOI:10.1016/j.cma.2023.116543
摘要

The turbulent flow characteristics, such as its multiscale and nonlinear nature, make the solution to turbulent flow problems complex. To simplify these problems, traditional methods have employed simplifications, such as RANS and LES models for dealing with the multiscale aspect and linear approximation theories for dealing with the nonlinear aspect. We designed a multiscale and nonlinear turbulence characteristic extraction model using a graph neural network with spatial convolutions and nonlinear fitting capabilities. Unlike traditional methods, this model computes turbulence data directly without resorting to simplified formulas. The multiscale problem is addressed by an anisotropic filter operator, and the nonlinear problem is dealt with through nonlinear correlation and nonlinear activation functions. To enhance the training efficiency of the model, a single training framework was implemented. This framework allows models trained on turbulent data with different Reynolds numbers to be applied. The relative errors for the X-axis velocity (U), Y-axis velocity (V) and pressure (P) are 0.932 %, 1.020 % and 0.594 %, respectively, when using turbulence data with the Reynolds number (Re) of 5×105 as the training set. Using Re = 1 × 103 and Re = 5 × 105 as training data and Re = 1× 105 as test data, the relative errors for U, V and P were found to be 2.527 %, 6.284 % and 0.799 % (Re = 1× 105). The study also analysed the impact of the anisotropic filter operator and nonlinearity on turbulence simulation and found that both play a critical role in turbulence calculation. These experiments demonstrate that the multiscale nonlinear turbulence simulator has a high computational performance in turbulence calculation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
KYN完成签到,获得积分10
2秒前
2秒前
桐桐应助叶未晞yi采纳,获得10
2秒前
2秒前
su发布了新的文献求助10
3秒前
123456789完成签到,获得积分10
5秒前
炙热的如柏完成签到,获得积分20
5秒前
6秒前
7秒前
HWei完成签到,获得积分10
7秒前
Ryan完成签到,获得积分10
7秒前
8秒前
Jzhang应助丙队长采纳,获得10
10秒前
11秒前
GXY发布了新的文献求助30
12秒前
Lucas应助专注秋尽采纳,获得10
12秒前
12秒前
754完成签到,获得积分10
12秒前
15秒前
学习猴发布了新的文献求助10
15秒前
充电宝应助炙热的如柏采纳,获得10
16秒前
所所应助qzaima采纳,获得10
16秒前
米兰达完成签到 ,获得积分0
17秒前
xg发布了新的文献求助10
19秒前
Loooong应助Ni采纳,获得10
20秒前
20秒前
WZ0904发布了新的文献求助10
20秒前
顾矜应助博ge采纳,获得10
22秒前
22秒前
Lotus发布了新的文献求助10
23秒前
24秒前
仁爱仙人掌完成签到,获得积分10
26秒前
ywang发布了新的文献求助10
26秒前
28秒前
28秒前
28秒前
ewqw关注了科研通微信公众号
29秒前
曦小蕊完成签到 ,获得积分10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824