Parameter-Efficient Transfer Learning for Remote Sensing Image–Text Retrieval

计算机科学 学习迁移 水准点(测量) 人工智能 图像检索 任务(项目管理) 机器学习 上下文图像分类 深度学习 模式识别(心理学) 图像(数学) 大地测量学 经济 管理 地理
作者
Yuan Yuan,Yang Zhan,Zhitong Xiong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:32
标识
DOI:10.1109/tgrs.2023.3308969
摘要

Vision-and-language pre-training (VLP) models have experienced a surge in popularity recently. By fine-tuning them on specific datasets, significant performance improvements have been observed in various tasks. However, full fine-tuning of VLP models not only consumes a significant amount of computational resources but also has a significant environmental impact. Moreover, as remote sensing (RS) data is constantly being updated, full fine-tuning may not be practical for real-world applications. To address this issue, in this work, we investigate the parameter-efficient transfer learning (PETL) method to effectively and efficiently transfer visual-language knowledge from the natural domain to the RS domain on the image-text retrieval task. To this end, we make the following contributions. 1) We construct a novel and sophisticated PETL framework for the RS image-text retrieval (RSITR) task, which includes the pretrained CLIP model, a multimodal remote sensing adapter, and a hybrid multi-modal contrastive (HMMC) learning objective; 2) To deal with the problem of high intra-modal similarity in RS data, we design a simple yet effective HMMC loss; 3) We provide comprehensive empirical studies for PETL-based RS image-text retrieval. Our results demonstrate that the proposed method is promising and of great potential for practical applications. 4) We benchmark extensive state-of-the-art PETL methods on the RSITR task. Our proposed model only contains 0.16M training parameters, which can achieve a parameter reduction of 98.9% compared to full fine-tuning, resulting in substantial savings in training costs. Our retrieval performance exceeds traditional methods by 7-13% and achieves comparable or better performance than full fine-tuning. This work can provide new ideas and useful insights for RS vision-language tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
orixero应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
1秒前
1秒前
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
1秒前
Ava应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
ding应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
无花果应助科研通管家采纳,获得10
1秒前
枯藤应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
allenise完成签到,获得积分10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
酷炫若魔发布了新的文献求助10
2秒前
ax完成签到,获得积分10
2秒前
软软萌萌发布了新的文献求助10
2秒前
2秒前
SciGPT应助善良梦竹采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
柯不正完成签到,获得积分20
3秒前
凌凌嘻应助DrNaz采纳,获得10
4秒前
XIAOJU_U完成签到 ,获得积分10
4秒前
酷炫河马关注了科研通微信公众号
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776350
求助须知:如何正确求助?哪些是违规求助? 5628713
关于积分的说明 15442059
捐赠科研通 4908468
什么是DOI,文献DOI怎么找? 2641217
邀请新用户注册赠送积分活动 1589167
关于科研通互助平台的介绍 1543851