Mitigating the capacity loss by crossover transport in vanadium redox flow battery: A chemometric efficient strategy proposed using finite element method simulation

流动电池 容量损失 电解质 氧化还原 电流密度 电池(电) 储能 流量(数学) 电流(流体) 分式析因设计 材料科学 化学 工艺工程 析因实验 机械 计算机科学 功率(物理) 热力学 工程类 无机化学 电气工程 电极 物理 物理化学 量子力学 机器学习
作者
Luis Felipe Pilonetto,Felipe Staciaki,Eryka Thamyris Damascena Nóbrega,Evaldo B. Carneiro‐Neto,Jeyse da Silva,Ernesto C. Pereira
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:474: 145336-145336 被引量:4
标识
DOI:10.1016/j.cej.2023.145336
摘要

Energy storage systems play a major role in the energy transition. Among them, vanadium redox flow batteries are a promising alternative to conventional batteries, which due to their design can be scaled, and it is possible to decouple power and energy density. However, the transport of electroactive species through the membrane (cross-contamination) reduces the capacity and useful life of these batteries. In this work, computational simulation was performed using the finite element method coupled to chemometric analysis to develop a mitigation strategy to decrease the vanadium redox flow batteries capacity loss by cross-contamination. This study can be divided into two stages. Initially, a 23 full factorial design was performed to evaluate and determine the effect of different variables: current density, active species concentration, and volumetric flow on the loss of capacity of vanadium redox flow batteries. In the second stage, a Doehlert design was performed with current density, the concentration of active species, and the volumetric flow between electrolyte tanks as variables to obtain the optimum conditions that minimize capacity loss. The results show that the current density and the concentration of active species are the main variables that affect capacity loss in vanadium redox flow batteries. The proposed approach successfully mitigated the cross-contamination in different combinations of current density and concentration of active species providing an optimal flow between electrolyte tanks for different operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桃子发布了新的文献求助20
刚刚
卡皮巴拉yuan完成签到,获得积分10
刚刚
刚刚
YZZ完成签到,获得积分10
1秒前
1秒前
风趣采白发布了新的文献求助10
1秒前
顺心的皮卡丘完成签到 ,获得积分10
1秒前
可爱的函函应助1097采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
侯安琪发布了新的文献求助10
2秒前
chenlin发布了新的文献求助30
3秒前
3秒前
3秒前
WangXiaoze发布了新的文献求助10
3秒前
✨✨✨发布了新的文献求助10
4秒前
4秒前
龍龖龘完成签到,获得积分20
4秒前
无某发布了新的文献求助10
4秒前
科研通AI5应助kqd采纳,获得10
4秒前
4秒前
楚慈楚发布了新的文献求助10
4秒前
威武的成风完成签到,获得积分10
5秒前
5秒前
5秒前
J.完成签到 ,获得积分10
5秒前
Xiaoshen发布了新的文献求助10
6秒前
YYXS完成签到,获得积分10
6秒前
7秒前
龍龖龘发布了新的文献求助10
7秒前
7秒前
7秒前
专一的大神完成签到 ,获得积分10
8秒前
hu发布了新的文献求助30
8秒前
宛海发布了新的文献求助10
8秒前
8秒前
9秒前
烟花应助飞鸿影下采纳,获得10
9秒前
lzy完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068492
求助须知:如何正确求助?哪些是违规求助? 4290117
关于积分的说明 13366180
捐赠科研通 4109894
什么是DOI,文献DOI怎么找? 2250517
邀请新用户注册赠送积分活动 1255866
关于科研通互助平台的介绍 1188426