Mitigating the capacity loss by crossover transport in vanadium redox flow battery: A chemometric efficient strategy proposed using finite element method simulation

流动电池 容量损失 电解质 氧化还原 电流密度 电池(电) 储能 流量(数学) 电流(流体) 分式析因设计 材料科学 化学 工艺工程 析因实验 机械 计算机科学 功率(物理) 热力学 工程类 无机化学 电气工程 电极 物理 物理化学 量子力学 机器学习
作者
Luis Felipe Pilonetto,Felipe Staciaki,Eryka Thamyris Damascena Nóbrega,Evaldo B. Carneiro‐Neto,Jeyse da Silva,Ernesto C. Pereira
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:474: 145336-145336 被引量:4
标识
DOI:10.1016/j.cej.2023.145336
摘要

Energy storage systems play a major role in the energy transition. Among them, vanadium redox flow batteries are a promising alternative to conventional batteries, which due to their design can be scaled, and it is possible to decouple power and energy density. However, the transport of electroactive species through the membrane (cross-contamination) reduces the capacity and useful life of these batteries. In this work, computational simulation was performed using the finite element method coupled to chemometric analysis to develop a mitigation strategy to decrease the vanadium redox flow batteries capacity loss by cross-contamination. This study can be divided into two stages. Initially, a 23 full factorial design was performed to evaluate and determine the effect of different variables: current density, active species concentration, and volumetric flow on the loss of capacity of vanadium redox flow batteries. In the second stage, a Doehlert design was performed with current density, the concentration of active species, and the volumetric flow between electrolyte tanks as variables to obtain the optimum conditions that minimize capacity loss. The results show that the current density and the concentration of active species are the main variables that affect capacity loss in vanadium redox flow batteries. The proposed approach successfully mitigated the cross-contamination in different combinations of current density and concentration of active species providing an optimal flow between electrolyte tanks for different operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡枝子完成签到,获得积分10
1秒前
苹果从菡完成签到,获得积分10
1秒前
ooseabiscuit完成签到,获得积分10
1秒前
1秒前
淡淡的雪发布了新的文献求助10
1秒前
不打扰完成签到 ,获得积分10
2秒前
千幻发布了新的文献求助10
2秒前
crr发布了新的文献求助10
2秒前
2秒前
3秒前
jklwss完成签到,获得积分10
3秒前
sa完成签到,获得积分10
3秒前
3秒前
万能图书馆应助成就莞采纳,获得30
3秒前
哇哈哈完成签到,获得积分10
4秒前
阔达的惠完成签到,获得积分10
4秒前
liang19640908完成签到 ,获得积分10
4秒前
季悦发布了新的文献求助10
4秒前
咸蛋黄巧克力完成签到,获得积分10
4秒前
4秒前
李唯佳完成签到 ,获得积分10
5秒前
zyt完成签到,获得积分10
5秒前
adasdad完成签到 ,获得积分10
5秒前
6秒前
嘿嘿完成签到 ,获得积分10
6秒前
6秒前
7秒前
tanmeng77发布了新的文献求助10
7秒前
8秒前
艺玲完成签到,获得积分10
8秒前
每天都想下班完成签到 ,获得积分10
8秒前
9秒前
圈圈发布了新的文献求助10
9秒前
忧郁的听露关注了科研通微信公众号
9秒前
风趣的涵柏完成签到,获得积分10
9秒前
10秒前
10秒前
成就梦松发布了新的文献求助10
10秒前
1233333完成签到,获得积分10
10秒前
ding应助EunolusZ采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672