超细纤维
材料科学
光致发光
复合材料
静电纺丝
膜
导电体
光电子学
纳米技术
聚合物
化学
生物化学
作者
Yaolin Hu,Haina Qi,Hong Shao,Liu Yang,Qianli Ma,Yuqi Sheng,Yunrui Xie,Wensheng Yu,Dan Li,Xiangting Dong
标识
DOI:10.1016/j.compscitech.2023.109923
摘要
The designed microscopic structure partitions for poly-functional polymer composites are significant ways to accelerate the development of materials science. Herein, a novel flexible one-dimensional three-sided walnut shaped (abbreviated as TWS) microfiber is firstly designed and built via electrospinning by using an especial tri-axis spinneret. As a case research of expanding applications, the unique structured {[Tb(SSA)3(TPPO)2/polymethylmethacrylate (PMMA)]//[polyaniline (PANI)/PMMA]}//[CoFe2O4/PMMA] (marked as {[TST/P]//[P/P]}//[C/P]) photoluminescent-conductive-magnetic poly-functional TWS microfiber array membrane (abbreviated as PTMAM) are constructed by directional arrangement of the TWS microfibers. Through the elaborate topology design, the TWS microfiber realizes the division of three independent micro functional regions. By restricting the photoluminescent, conductive and magnetic media in their respective domains, the harmful interactions among the three functions are efficaciously avoided, thus enabling outstanding photoluminescent-conductive-magnetic poly-functions. By adjusting the concentrations of Tb(SSA)3(TPPO)2, PANI and CoFe2O4 NPs, PTMAM exhibits adjustable photoluminescence, aeolotropic conduction and magnetism. The photoluminescence can be used to detect whether PTMAM normally operates or abnormally operates in darkness. The formation mechanisms of TWS microfibers and array membrane are expounded. In addition, this unique TWS microfiber realizes the pairwise contact of each construction block, forming a unique heterostructure, which is expected to play a significant role in catalysis, energy storage and other fields.
科研通智能强力驱动
Strongly Powered by AbleSci AI