已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Pore characterization was achieved based on the improved U-net deep learning network model and scanning electron microscope images

扫描电子显微镜 表征(材料科学) 网(多面体) 材料科学 电子显微镜 计算机科学 人工智能 光学 纳米技术 物理 数学 复合材料 几何学
作者
Xiangru Chen,Xin Tang,Junjie Xiong,Ruiyu He,Biao Wang
出处
期刊:Petroleum Science and Technology [Informa]
卷期号:: 1-15 被引量:2
标识
DOI:10.1080/10916466.2024.2326178
摘要

The SEM image method is commonly used in the qualitative characterization of shale pores. The development of shale micro-reservoir pores can be visually observed through SEM images, but the efficiency of manual image processing is low and subjective. The introduction of deep learning greatly improves the efficiency of pore analysis. In this paper, the argon ion polishing SEM image of Longmaxi Formation shale in southern Sichuan is taken as an example. Intelligent identification and quantitative characterization of pores in shale SEM images are realized by Pore-net network model. Pore-net is based on the U-net network model. The way the model reads the data is changed so that the model does not focus on the region of interest. The number of convolutional layers of the model is increased. The Canny edge extraction algorithm is added. It not only reduces the workload of data set production, but also enhances the ability of network model to identify pores. The results show that the deep learning semantic image segmentation method is suitable for pore recognition of shale SEM images. The full convolutional neural network model is used to train the manually labeled shale SEM images, which can realize the intelligent recognition and quantitative characterization of shale SEM images. Compared with FCN and DeepLab V3+ network model, Pore-net performs better. Only 170 data sets are used to train the model. The Pore-net network model still has a good recognition effect on pores, which solves the problem of low accuracy of traditional pore recognition methods. The deviation between the porosity calculated by the Pore-net network model and the experimental data is between 12% and 19%. Compared with the porosity results calculated by the binarization method and other network models, the results calculated by Pore-net are closer to the real values, which proves that the porosity calculated by the Pore-net network model is reliable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一完成签到,获得积分10
1秒前
傲娇石头发布了新的文献求助10
3秒前
陈尹蓝完成签到 ,获得积分10
3秒前
只如初完成签到,获得积分10
4秒前
coolchaos完成签到,获得积分10
5秒前
潇潇完成签到 ,获得积分10
5秒前
上官凯凯完成签到 ,获得积分10
6秒前
晚意完成签到 ,获得积分10
6秒前
hhhhhh完成签到,获得积分10
8秒前
9秒前
老六完成签到 ,获得积分10
9秒前
吗替麦考酚酯关注了科研通微信公众号
11秒前
笔墨丹青完成签到,获得积分10
11秒前
mmyhn应助露露采纳,获得20
14秒前
万里完成签到,获得积分10
14秒前
yyy完成签到 ,获得积分10
21秒前
航行天下完成签到,获得积分10
27秒前
管难破完成签到,获得积分20
28秒前
一叶知秋完成签到 ,获得积分10
30秒前
30秒前
所所应助单薄的采萱采纳,获得10
30秒前
32秒前
JIANG完成签到 ,获得积分10
32秒前
移动马桶完成签到 ,获得积分10
33秒前
健健康康发布了新的文献求助10
33秒前
38秒前
gxl完成签到,获得积分10
38秒前
39秒前
42秒前
xixixixi完成签到,获得积分10
43秒前
DSUNNY完成签到 ,获得积分10
45秒前
47秒前
zpli完成签到 ,获得积分10
48秒前
LRxxx完成签到 ,获得积分10
48秒前
无限的乐松完成签到 ,获得积分10
49秒前
小二郎应助科研通管家采纳,获得10
49秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
英姑应助科研通管家采纳,获得10
49秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146584
求助须知:如何正确求助?哪些是违规求助? 2797928
关于积分的说明 7826122
捐赠科研通 2454415
什么是DOI,文献DOI怎么找? 1306275
科研通“疑难数据库(出版商)”最低求助积分说明 627692
版权声明 601522