Pore characterization was achieved based on the improved U-net deep learning network model and scanning electron microscope images

扫描电子显微镜 表征(材料科学) 网(多面体) 材料科学 电子显微镜 计算机科学 人工智能 光学 纳米技术 物理 数学 复合材料 几何学
作者
Xiangru Chen,Xin Tang,Junjie Xiong,Ruiyu He,Biao Wang
出处
期刊:Petroleum Science and Technology [Informa]
卷期号:: 1-15 被引量:2
标识
DOI:10.1080/10916466.2024.2326178
摘要

The SEM image method is commonly used in the qualitative characterization of shale pores. The development of shale micro-reservoir pores can be visually observed through SEM images, but the efficiency of manual image processing is low and subjective. The introduction of deep learning greatly improves the efficiency of pore analysis. In this paper, the argon ion polishing SEM image of Longmaxi Formation shale in southern Sichuan is taken as an example. Intelligent identification and quantitative characterization of pores in shale SEM images are realized by Pore-net network model. Pore-net is based on the U-net network model. The way the model reads the data is changed so that the model does not focus on the region of interest. The number of convolutional layers of the model is increased. The Canny edge extraction algorithm is added. It not only reduces the workload of data set production, but also enhances the ability of network model to identify pores. The results show that the deep learning semantic image segmentation method is suitable for pore recognition of shale SEM images. The full convolutional neural network model is used to train the manually labeled shale SEM images, which can realize the intelligent recognition and quantitative characterization of shale SEM images. Compared with FCN and DeepLab V3+ network model, Pore-net performs better. Only 170 data sets are used to train the model. The Pore-net network model still has a good recognition effect on pores, which solves the problem of low accuracy of traditional pore recognition methods. The deviation between the porosity calculated by the Pore-net network model and the experimental data is between 12% and 19%. Compared with the porosity results calculated by the binarization method and other network models, the results calculated by Pore-net are closer to the real values, which proves that the porosity calculated by the Pore-net network model is reliable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lizzzzzz完成签到,获得积分10
1秒前
yyj发布了新的文献求助10
1秒前
请和我吃饭完成签到,获得积分10
2秒前
北城发布了新的文献求助10
3秒前
勤恳冰淇淋完成签到 ,获得积分10
4秒前
6秒前
6秒前
清晏完成签到,获得积分10
7秒前
曲书文完成签到,获得积分10
8秒前
李瑞瑞发布了新的文献求助10
8秒前
5123完成签到,获得积分10
8秒前
勤劳落雁发布了新的文献求助10
8秒前
8秒前
11秒前
xuxu完成签到 ,获得积分10
11秒前
12秒前
毛毛虫发布了新的文献求助10
12秒前
科研通AI5应助朴斓采纳,获得10
13秒前
陈彦冰完成签到,获得积分10
13秒前
tianny完成签到,获得积分10
14秒前
浪迹天涯发布了新的文献求助10
15秒前
星星发布了新的文献求助10
15秒前
李瑞瑞完成签到,获得积分10
16秒前
16秒前
18秒前
星辰大海应助jy采纳,获得10
18秒前
19秒前
我是站长才怪应助Khr1stINK采纳,获得10
19秒前
20秒前
xh完成签到,获得积分10
21秒前
para_团结完成签到,获得积分10
22秒前
怡然剑成发布了新的文献求助10
22秒前
23秒前
23秒前
ipeakkka发布了新的文献求助10
23秒前
George完成签到,获得积分10
25秒前
WDK完成签到,获得积分10
25秒前
情怀应助敏感的芷采纳,获得10
25秒前
Orange应助方勇飞采纳,获得10
26秒前
FashionBoy应助烂漫驳采纳,获得10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824