Covariate adjusted meta-analytic predictive (CA-MAP) prior for historical borrowing using patient-level data

协变量 计量经济学 结果(博弈论) 一致性(知识库) 相似性(几何) 人口 统计 计算机科学 数据挖掘 医学 数学 人工智能 环境卫生 图像(数学) 数理经济学
作者
Bradley Hupf,Yunlong Yang,Ryan Gryder,Veronica Bunn,Jianchang Lin
出处
期刊:Journal of Biopharmaceutical Statistics [Informa]
卷期号:: 1-9
标识
DOI:10.1080/10543406.2024.2330206
摘要

Utilization of historical data is increasingly common for gaining efficiency in the drug development and decision-making processes. The underlying issue of between-trial heterogeneity in clinical trials is a barrier in making these methods standard practice in the pharmaceutical industry. Common methods for historical borrowing discount the borrowed information based on the similarity between outcomes in the historical and current data. However, individual clinical trials and their outcomes are intrinsically heterogenous due to differences in study design, patient characteristics, and changes in standard of care. Additionally, differences in covariate distributions can produce inconsistencies in clinical outcome data between historical and current data when there may be a consistent covariate effect. In such scenario, borrowing historical data is still advantageous even though the population level outcome summaries are different. In this paper, we propose a covariate adjusted meta-analytic-predictive (CA-MAP) prior for historical control borrowing. A MAP prior is assigned to each covariate effect, allowing the amount of borrowing to be determined by the consistency of the covariate effects across the current and historical data. This approach integrates between-trial heterogeneity with covariate level heterogeneity to tune the amount of information borrowed. Our method is unique as it directly models the covariate effects instead of using the covariates to select a similar population to borrow from. In summary, our proposed patient-level extension of the MAP prior allows for the amount of historical control borrowing to depend on the similarity of covariate effects rather than similarity in clinical outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ming发布了新的文献求助10
刚刚
刚刚
Dawn发布了新的文献求助10
刚刚
充电宝应助chany采纳,获得10
1秒前
Wujt完成签到 ,获得积分10
2秒前
贝贝发布了新的文献求助10
2秒前
3秒前
匹诺曹发布了新的文献求助10
4秒前
4秒前
4秒前
浮游应助yaya采纳,获得10
4秒前
jiaxvguo完成签到 ,获得积分10
5秒前
6秒前
6秒前
易安发布了新的文献求助10
8秒前
科研通AI6应助姚盈盈采纳,获得10
8秒前
cossen完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
CYQ发布了新的文献求助10
9秒前
rain完成签到,获得积分20
9秒前
xuexixiaojin完成签到 ,获得积分10
10秒前
10秒前
zzz发布了新的文献求助10
11秒前
栀蓝完成签到 ,获得积分10
13秒前
13秒前
14秒前
14秒前
14秒前
花痴的手套完成签到 ,获得积分10
14秒前
大模型应助快乐薯条采纳,获得10
15秒前
科研通AI6应助zzz采纳,获得10
16秒前
axuan发布了新的文献求助10
16秒前
CYQ完成签到,获得积分10
16秒前
zhanglin完成签到,获得积分10
17秒前
CipherSage应助陈阳采纳,获得10
17秒前
33完成签到,获得积分10
17秒前
kangkang完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578047
求助须知:如何正确求助?哪些是违规求助? 4663043
关于积分的说明 14744355
捐赠科研通 4603721
什么是DOI,文献DOI怎么找? 2526643
邀请新用户注册赠送积分活动 1496203
关于科研通互助平台的介绍 1465657