Covariate adjusted meta-analytic predictive (CA-MAP) prior for historical borrowing using patient-level data

协变量 计量经济学 结果(博弈论) 一致性(知识库) 相似性(几何) 人口 统计 计算机科学 数据挖掘 医学 数学 人工智能 环境卫生 数理经济学 图像(数学)
作者
Bradley Hupf,Yunlong Yang,Ryan Gryder,Veronica Bunn,Jianchang Lin
出处
期刊:Journal of Biopharmaceutical Statistics [Taylor & Francis]
卷期号:: 1-9
标识
DOI:10.1080/10543406.2024.2330206
摘要

Utilization of historical data is increasingly common for gaining efficiency in the drug development and decision-making processes. The underlying issue of between-trial heterogeneity in clinical trials is a barrier in making these methods standard practice in the pharmaceutical industry. Common methods for historical borrowing discount the borrowed information based on the similarity between outcomes in the historical and current data. However, individual clinical trials and their outcomes are intrinsically heterogenous due to differences in study design, patient characteristics, and changes in standard of care. Additionally, differences in covariate distributions can produce inconsistencies in clinical outcome data between historical and current data when there may be a consistent covariate effect. In such scenario, borrowing historical data is still advantageous even though the population level outcome summaries are different. In this paper, we propose a covariate adjusted meta-analytic-predictive (CA-MAP) prior for historical control borrowing. A MAP prior is assigned to each covariate effect, allowing the amount of borrowing to be determined by the consistency of the covariate effects across the current and historical data. This approach integrates between-trial heterogeneity with covariate level heterogeneity to tune the amount of information borrowed. Our method is unique as it directly models the covariate effects instead of using the covariates to select a similar population to borrow from. In summary, our proposed patient-level extension of the MAP prior allows for the amount of historical control borrowing to depend on the similarity of covariate effects rather than similarity in clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小叶子发布了新的文献求助30
刚刚
小二郎应助经过采纳,获得10
刚刚
落尘完成签到,获得积分10
刚刚
搜集达人应助qq采纳,获得10
1秒前
1秒前
Ahan完成签到,获得积分20
2秒前
杨馨蕊发布了新的文献求助10
3秒前
zyyy发布了新的文献求助10
3秒前
WangXuerong发布了新的文献求助10
3秒前
情怀应助WHITE1采纳,获得10
4秒前
无奈傲菡发布了新的文献求助10
4秒前
4秒前
5秒前
大个应助中午吃什么采纳,获得10
5秒前
浮游应助愉快树叶采纳,获得30
5秒前
XT完成签到,获得积分10
5秒前
6秒前
邱志鸿完成签到,获得积分10
6秒前
雨0926应助KKKKKKKKKKKK采纳,获得200
7秒前
wanci应助穆仰采纳,获得10
7秒前
阴天小怪兽完成签到,获得积分10
8秒前
8秒前
8秒前
zj发布了新的文献求助10
8秒前
9秒前
科研通AI2S应助Koi采纳,获得10
10秒前
10秒前
枯荣完成签到 ,获得积分10
10秒前
11秒前
打打应助666采纳,获得10
11秒前
11秒前
Owen应助123采纳,获得10
12秒前
科目三应助edk采纳,获得20
12秒前
HKL完成签到 ,获得积分10
13秒前
14秒前
14秒前
王晴晴发布了新的文献求助10
14秒前
14秒前
xiaopang发布了新的文献求助10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5004587
求助须知:如何正确求助?哪些是违规求助? 4248596
关于积分的说明 13237599
捐赠科研通 4048105
什么是DOI,文献DOI怎么找? 2214676
邀请新用户注册赠送积分活动 1224572
关于科研通互助平台的介绍 1145052