Covariate adjusted meta-analytic predictive (CA-MAP) prior for historical borrowing using patient-level data

协变量 计量经济学 结果(博弈论) 一致性(知识库) 相似性(几何) 人口 统计 计算机科学 数据挖掘 医学 数学 人工智能 环境卫生 图像(数学) 数理经济学
作者
Bradley Hupf,Yunlong Yang,Ryan Gryder,Veronica Bunn,Jianchang Lin
出处
期刊:Journal of Biopharmaceutical Statistics [Informa]
卷期号:: 1-9
标识
DOI:10.1080/10543406.2024.2330206
摘要

Utilization of historical data is increasingly common for gaining efficiency in the drug development and decision-making processes. The underlying issue of between-trial heterogeneity in clinical trials is a barrier in making these methods standard practice in the pharmaceutical industry. Common methods for historical borrowing discount the borrowed information based on the similarity between outcomes in the historical and current data. However, individual clinical trials and their outcomes are intrinsically heterogenous due to differences in study design, patient characteristics, and changes in standard of care. Additionally, differences in covariate distributions can produce inconsistencies in clinical outcome data between historical and current data when there may be a consistent covariate effect. In such scenario, borrowing historical data is still advantageous even though the population level outcome summaries are different. In this paper, we propose a covariate adjusted meta-analytic-predictive (CA-MAP) prior for historical control borrowing. A MAP prior is assigned to each covariate effect, allowing the amount of borrowing to be determined by the consistency of the covariate effects across the current and historical data. This approach integrates between-trial heterogeneity with covariate level heterogeneity to tune the amount of information borrowed. Our method is unique as it directly models the covariate effects instead of using the covariates to select a similar population to borrow from. In summary, our proposed patient-level extension of the MAP prior allows for the amount of historical control borrowing to depend on the similarity of covariate effects rather than similarity in clinical outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GG波波发布了新的文献求助10
1秒前
吴筮发布了新的文献求助10
1秒前
深情安青应助姜萌萌采纳,获得10
2秒前
niumi190完成签到,获得积分0
3秒前
11231发布了新的文献求助10
3秒前
斯文败类应助平淡夏云采纳,获得10
4秒前
gz发布了新的文献求助10
4秒前
5秒前
科研通AI6应助Shinchan采纳,获得10
5秒前
牛牛最棒完成签到 ,获得积分10
5秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
9秒前
小蘑菇应助wtldkz采纳,获得10
9秒前
默默的妙竹完成签到 ,获得积分10
9秒前
裴果发布了新的文献求助10
10秒前
Paul111发布了新的文献求助10
11秒前
12秒前
Jes发布了新的文献求助30
12秒前
14秒前
14秒前
李健应助昭蘅采纳,获得10
14秒前
轻松毒娘完成签到,获得积分10
15秒前
华仔应助吴筮采纳,获得10
16秒前
天天快乐应助合适孤兰采纳,获得10
18秒前
lucinda发布了新的文献求助10
19秒前
19秒前
Yonica完成签到,获得积分10
22秒前
橙子完成签到,获得积分10
22秒前
Gaojinyun完成签到,获得积分10
22秒前
gf完成签到,获得积分10
22秒前
谨慎的尔白完成签到,获得积分10
23秒前
王十三完成签到 ,获得积分10
24秒前
26秒前
28秒前
科研通AI6应助研友_LmAWYL采纳,获得10
28秒前
研友_VZG7GZ应助刘歌采纳,获得10
29秒前
yidi01完成签到,获得积分10
29秒前
30秒前
30秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715