亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Covariate adjusted meta-analytic predictive (CA-MAP) prior for historical borrowing using patient-level data

协变量 计量经济学 结果(博弈论) 一致性(知识库) 相似性(几何) 人口 统计 计算机科学 数据挖掘 医学 数学 人工智能 环境卫生 图像(数学) 数理经济学
作者
Bradley Hupf,Yunlong Yang,Ryan Gryder,Veronica Bunn,Jianchang Lin
出处
期刊:Journal of Biopharmaceutical Statistics [Informa]
卷期号:: 1-9
标识
DOI:10.1080/10543406.2024.2330206
摘要

Utilization of historical data is increasingly common for gaining efficiency in the drug development and decision-making processes. The underlying issue of between-trial heterogeneity in clinical trials is a barrier in making these methods standard practice in the pharmaceutical industry. Common methods for historical borrowing discount the borrowed information based on the similarity between outcomes in the historical and current data. However, individual clinical trials and their outcomes are intrinsically heterogenous due to differences in study design, patient characteristics, and changes in standard of care. Additionally, differences in covariate distributions can produce inconsistencies in clinical outcome data between historical and current data when there may be a consistent covariate effect. In such scenario, borrowing historical data is still advantageous even though the population level outcome summaries are different. In this paper, we propose a covariate adjusted meta-analytic-predictive (CA-MAP) prior for historical control borrowing. A MAP prior is assigned to each covariate effect, allowing the amount of borrowing to be determined by the consistency of the covariate effects across the current and historical data. This approach integrates between-trial heterogeneity with covariate level heterogeneity to tune the amount of information borrowed. Our method is unique as it directly models the covariate effects instead of using the covariates to select a similar population to borrow from. In summary, our proposed patient-level extension of the MAP prior allows for the amount of historical control borrowing to depend on the similarity of covariate effects rather than similarity in clinical outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿丕啊呸完成签到,获得积分10
27秒前
28秒前
1分钟前
1分钟前
寻道图强应助科研通管家采纳,获得50
1分钟前
Jasper应助诉与山风听采纳,获得10
1分钟前
Tree_QD完成签到 ,获得积分10
1分钟前
CMUSK完成签到,获得积分10
1分钟前
2分钟前
yang发布了新的文献求助10
2分钟前
优美香露发布了新的文献求助10
2分钟前
研友_VZG7GZ应助优美香露采纳,获得30
2分钟前
3分钟前
3分钟前
Carol发布了新的文献求助10
3分钟前
3分钟前
3分钟前
优美香露发布了新的文献求助30
3分钟前
善学以致用应助优美香露采纳,获得30
3分钟前
3分钟前
ajing发布了新的文献求助10
3分钟前
3分钟前
4分钟前
zwang688完成签到,获得积分10
4分钟前
OCDer发布了新的文献求助10
4分钟前
4分钟前
yang发布了新的文献求助10
4分钟前
OCDer完成签到,获得积分0
4分钟前
5分钟前
Zima发布了新的文献求助10
5分钟前
Zima完成签到,获得积分10
5分钟前
年轻绮波完成签到,获得积分10
5分钟前
5分钟前
5分钟前
jianglan完成签到,获得积分10
5分钟前
5分钟前
jason完成签到 ,获得积分10
5分钟前
5分钟前
刻苦的小土豆完成签到 ,获得积分10
6分钟前
香蕉觅云应助如意修洁采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657952
求助须知:如何正确求助?哪些是违规求助? 4815338
关于积分的说明 15080712
捐赠科研通 4816255
什么是DOI,文献DOI怎么找? 2577211
邀请新用户注册赠送积分活动 1532242
关于科研通互助平台的介绍 1490814