已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Covariate adjusted meta-analytic predictive (CA-MAP) prior for historical borrowing using patient-level data

协变量 计量经济学 结果(博弈论) 一致性(知识库) 相似性(几何) 人口 统计 计算机科学 数据挖掘 医学 数学 人工智能 环境卫生 图像(数学) 数理经济学
作者
Bradley Hupf,Yunlong Yang,Ryan Gryder,Veronica Bunn,Jianchang Lin
出处
期刊:Journal of Biopharmaceutical Statistics [Informa]
卷期号:: 1-9
标识
DOI:10.1080/10543406.2024.2330206
摘要

Utilization of historical data is increasingly common for gaining efficiency in the drug development and decision-making processes. The underlying issue of between-trial heterogeneity in clinical trials is a barrier in making these methods standard practice in the pharmaceutical industry. Common methods for historical borrowing discount the borrowed information based on the similarity between outcomes in the historical and current data. However, individual clinical trials and their outcomes are intrinsically heterogenous due to differences in study design, patient characteristics, and changes in standard of care. Additionally, differences in covariate distributions can produce inconsistencies in clinical outcome data between historical and current data when there may be a consistent covariate effect. In such scenario, borrowing historical data is still advantageous even though the population level outcome summaries are different. In this paper, we propose a covariate adjusted meta-analytic-predictive (CA-MAP) prior for historical control borrowing. A MAP prior is assigned to each covariate effect, allowing the amount of borrowing to be determined by the consistency of the covariate effects across the current and historical data. This approach integrates between-trial heterogeneity with covariate level heterogeneity to tune the amount of information borrowed. Our method is unique as it directly models the covariate effects instead of using the covariates to select a similar population to borrow from. In summary, our proposed patient-level extension of the MAP prior allows for the amount of historical control borrowing to depend on the similarity of covariate effects rather than similarity in clinical outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wlei完成签到,获得积分10
1秒前
2秒前
爱听歌契完成签到 ,获得积分10
2秒前
无题完成签到,获得积分10
5秒前
桐桐应助壮观的雅绿采纳,获得10
5秒前
脑洞疼应助壮观的雅绿采纳,获得10
5秒前
搜集达人应助壮观的雅绿采纳,获得10
5秒前
科研通AI2S应助壮观的雅绿采纳,获得10
5秒前
情怀应助壮观的雅绿采纳,获得10
6秒前
思源应助壮观的雅绿采纳,获得10
6秒前
喏晨完成签到 ,获得积分10
8秒前
gln完成签到 ,获得积分10
11秒前
PKL发布了新的文献求助10
12秒前
星辰大海应助方汀采纳,获得10
12秒前
DrJiang完成签到,获得积分10
12秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
方汀应助科研通管家采纳,获得10
13秒前
ccm应助科研通管家采纳,获得10
13秒前
李健的小迷弟应助Keats采纳,获得10
13秒前
ccm应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
ccm应助科研通管家采纳,获得10
14秒前
852应助科研通管家采纳,获得10
14秒前
14秒前
17秒前
豌豆苗完成签到 ,获得积分10
17秒前
充电宝应助Ken921319005采纳,获得10
17秒前
淡淡向日葵完成签到 ,获得积分10
18秒前
11完成签到 ,获得积分10
20秒前
sxb10101给Wyy_的求助进行了留言
21秒前
Henvy完成签到,获得积分10
21秒前
22秒前
侯_完成签到 ,获得积分10
24秒前
西扬完成签到 ,获得积分10
26秒前
hanatae完成签到,获得积分10
27秒前
yy0322发布了新的文献求助10
27秒前
nihao完成签到,获得积分10
28秒前
minami发布了新的文献求助50
30秒前
心灵美鑫完成签到 ,获得积分10
36秒前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644324
求助须知:如何正确求助?哪些是违规求助? 4763686
关于积分的说明 15024662
捐赠科研通 4802727
什么是DOI,文献DOI怎么找? 2567530
邀请新用户注册赠送积分活动 1525292
关于科研通互助平台的介绍 1484725