Covariate adjusted meta-analytic predictive (CA-MAP) prior for historical borrowing using patient-level data

协变量 计量经济学 结果(博弈论) 一致性(知识库) 相似性(几何) 人口 统计 计算机科学 数据挖掘 医学 数学 人工智能 环境卫生 图像(数学) 数理经济学
作者
Bradley Hupf,Yunlong Yang,Ryan Gryder,Veronica Bunn,Jianchang Lin
出处
期刊:Journal of Biopharmaceutical Statistics [Informa]
卷期号:: 1-9
标识
DOI:10.1080/10543406.2024.2330206
摘要

Utilization of historical data is increasingly common for gaining efficiency in the drug development and decision-making processes. The underlying issue of between-trial heterogeneity in clinical trials is a barrier in making these methods standard practice in the pharmaceutical industry. Common methods for historical borrowing discount the borrowed information based on the similarity between outcomes in the historical and current data. However, individual clinical trials and their outcomes are intrinsically heterogenous due to differences in study design, patient characteristics, and changes in standard of care. Additionally, differences in covariate distributions can produce inconsistencies in clinical outcome data between historical and current data when there may be a consistent covariate effect. In such scenario, borrowing historical data is still advantageous even though the population level outcome summaries are different. In this paper, we propose a covariate adjusted meta-analytic-predictive (CA-MAP) prior for historical control borrowing. A MAP prior is assigned to each covariate effect, allowing the amount of borrowing to be determined by the consistency of the covariate effects across the current and historical data. This approach integrates between-trial heterogeneity with covariate level heterogeneity to tune the amount of information borrowed. Our method is unique as it directly models the covariate effects instead of using the covariates to select a similar population to borrow from. In summary, our proposed patient-level extension of the MAP prior allows for the amount of historical control borrowing to depend on the similarity of covariate effects rather than similarity in clinical outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好运6连发布了新的文献求助10
1秒前
JamesPei应助emmm采纳,获得10
2秒前
Jasper应助喜悦一德采纳,获得10
2秒前
zcy完成签到,获得积分10
2秒前
zyy发布了新的文献求助10
2秒前
2秒前
研友_LMyj0L发布了新的文献求助10
2秒前
2秒前
杨一乐发布了新的文献求助10
3秒前
小花完成签到,获得积分10
3秒前
宋佳发布了新的文献求助10
3秒前
完美世界应助111采纳,获得10
4秒前
5秒前
雨后彩虹伤完成签到,获得积分10
5秒前
popkeke完成签到,获得积分10
6秒前
amberzyc应助仁爱的念文采纳,获得10
6秒前
欧克完成签到 ,获得积分10
7秒前
花根发布了新的文献求助10
7秒前
7秒前
小木完成签到,获得积分10
7秒前
勤恳风华完成签到,获得积分10
7秒前
承乐发布了新的文献求助10
7秒前
兜兜完成签到,获得积分10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
老实从蕾完成签到 ,获得积分10
10秒前
10秒前
11秒前
二三三发布了新的文献求助10
11秒前
好名字发布了新的文献求助10
11秒前
A.y.w完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
科研通AI6应助sci大户采纳,获得10
13秒前
13秒前
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809