Covariate adjusted meta-analytic predictive (CA-MAP) prior for historical borrowing using patient-level data

协变量 计量经济学 结果(博弈论) 一致性(知识库) 相似性(几何) 人口 统计 计算机科学 数据挖掘 医学 数学 人工智能 环境卫生 图像(数学) 数理经济学
作者
Bradley Hupf,Yunlong Yang,Ryan Gryder,Veronica Bunn,Jianchang Lin
出处
期刊:Journal of Biopharmaceutical Statistics [Informa]
卷期号:: 1-9
标识
DOI:10.1080/10543406.2024.2330206
摘要

Utilization of historical data is increasingly common for gaining efficiency in the drug development and decision-making processes. The underlying issue of between-trial heterogeneity in clinical trials is a barrier in making these methods standard practice in the pharmaceutical industry. Common methods for historical borrowing discount the borrowed information based on the similarity between outcomes in the historical and current data. However, individual clinical trials and their outcomes are intrinsically heterogenous due to differences in study design, patient characteristics, and changes in standard of care. Additionally, differences in covariate distributions can produce inconsistencies in clinical outcome data between historical and current data when there may be a consistent covariate effect. In such scenario, borrowing historical data is still advantageous even though the population level outcome summaries are different. In this paper, we propose a covariate adjusted meta-analytic-predictive (CA-MAP) prior for historical control borrowing. A MAP prior is assigned to each covariate effect, allowing the amount of borrowing to be determined by the consistency of the covariate effects across the current and historical data. This approach integrates between-trial heterogeneity with covariate level heterogeneity to tune the amount of information borrowed. Our method is unique as it directly models the covariate effects instead of using the covariates to select a similar population to borrow from. In summary, our proposed patient-level extension of the MAP prior allows for the amount of historical control borrowing to depend on the similarity of covariate effects rather than similarity in clinical outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无问完成签到,获得积分10
1秒前
彭于晏应助霸王学习机采纳,获得10
1秒前
研友_Z63G18完成签到 ,获得积分10
1秒前
2秒前
Popeye应助knn采纳,获得10
2秒前
芙瑞完成签到 ,获得积分10
2秒前
想吃螺蛳粉应助11采纳,获得10
4秒前
小蘑菇应助风轩轩采纳,获得10
6秒前
英勇的翠霜完成签到,获得积分10
6秒前
汉堡包应助个性的涫采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
guojingjing发布了新的文献求助10
8秒前
一只不受管束的小狸Miao完成签到 ,获得积分10
9秒前
lllllty完成签到,获得积分10
9秒前
周周完成签到 ,获得积分10
10秒前
烟花应助itharmony采纳,获得10
10秒前
香蕉梨愁发布了新的文献求助10
10秒前
老李完成签到,获得积分10
12秒前
2号完成签到,获得积分10
12秒前
王粒伊完成签到,获得积分10
13秒前
sst完成签到,获得积分10
14秒前
14秒前
充电宝应助MHR采纳,获得10
16秒前
18秒前
玩命的白亦关注了科研通微信公众号
18秒前
tim发布了新的文献求助10
18秒前
19秒前
20秒前
lucky完成签到 ,获得积分10
20秒前
李健应助小海棉采纳,获得10
21秒前
瘦瘦雅香完成签到,获得积分10
21秒前
21秒前
敏感远锋完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
melody发布了新的文献求助10
24秒前
善学以致用应助香蕉梨愁采纳,获得10
24秒前
ll发布了新的文献求助20
25秒前
xxx发布了新的文献求助10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618349
求助须知:如何正确求助?哪些是违规求助? 4703244
关于积分的说明 14921791
捐赠科研通 4757233
什么是DOI,文献DOI怎么找? 2550059
邀请新用户注册赠送积分活动 1512904
关于科研通互助平台的介绍 1474299