已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Covariate adjusted meta-analytic predictive (CA-MAP) prior for historical borrowing using patient-level data

协变量 计量经济学 结果(博弈论) 一致性(知识库) 相似性(几何) 人口 统计 计算机科学 数据挖掘 医学 数学 人工智能 环境卫生 图像(数学) 数理经济学
作者
Bradley Hupf,Yunlong Yang,Ryan Gryder,Veronica Bunn,Jianchang Lin
出处
期刊:Journal of Biopharmaceutical Statistics [Informa]
卷期号:: 1-9
标识
DOI:10.1080/10543406.2024.2330206
摘要

Utilization of historical data is increasingly common for gaining efficiency in the drug development and decision-making processes. The underlying issue of between-trial heterogeneity in clinical trials is a barrier in making these methods standard practice in the pharmaceutical industry. Common methods for historical borrowing discount the borrowed information based on the similarity between outcomes in the historical and current data. However, individual clinical trials and their outcomes are intrinsically heterogenous due to differences in study design, patient characteristics, and changes in standard of care. Additionally, differences in covariate distributions can produce inconsistencies in clinical outcome data between historical and current data when there may be a consistent covariate effect. In such scenario, borrowing historical data is still advantageous even though the population level outcome summaries are different. In this paper, we propose a covariate adjusted meta-analytic-predictive (CA-MAP) prior for historical control borrowing. A MAP prior is assigned to each covariate effect, allowing the amount of borrowing to be determined by the consistency of the covariate effects across the current and historical data. This approach integrates between-trial heterogeneity with covariate level heterogeneity to tune the amount of information borrowed. Our method is unique as it directly models the covariate effects instead of using the covariates to select a similar population to borrow from. In summary, our proposed patient-level extension of the MAP prior allows for the amount of historical control borrowing to depend on the similarity of covariate effects rather than similarity in clinical outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ceeray23应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
ceeray23应助科研通管家采纳,获得10
1秒前
ceeray23应助科研通管家采纳,获得10
1秒前
单薄青亦发布了新的文献求助10
3秒前
6秒前
酉默发布了新的文献求助10
6秒前
Yikao完成签到 ,获得积分10
9秒前
11秒前
111完成签到 ,获得积分10
12秒前
瀅瀅发布了新的文献求助10
12秒前
隐形曼青应助小恐龙采纳,获得10
15秒前
Oculus完成签到 ,获得积分10
15秒前
17秒前
小丸子和zz完成签到 ,获得积分10
17秒前
王超发布了新的文献求助10
17秒前
19秒前
年鱼精完成签到 ,获得积分10
19秒前
科研通AI6应助keyan采纳,获得10
22秒前
犹豫幻丝完成签到,获得积分10
23秒前
科研废物完成签到 ,获得积分10
24秒前
韩星发布了新的文献求助10
26秒前
27秒前
Tanya47应助xhkxz采纳,获得10
28秒前
初雪完成签到,获得积分10
30秒前
叶子发布了新的文献求助10
30秒前
w1x2123完成签到,获得积分10
33秒前
1234567完成签到,获得积分10
35秒前
李爱国应助cenghao采纳,获得10
35秒前
36秒前
Signs完成签到 ,获得积分10
37秒前
spy完成签到,获得积分10
39秒前
W~舞完成签到,获得积分10
39秒前
1234567发布了新的文献求助10
41秒前
饿哭了塞完成签到 ,获得积分10
43秒前
TiAmo完成签到,获得积分10
45秒前
Zgrey完成签到 ,获得积分10
45秒前
47秒前
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650543
求助须知:如何正确求助?哪些是违规求助? 4780917
关于积分的说明 15052239
捐赠科研通 4809450
什么是DOI,文献DOI怎么找? 2572248
邀请新用户注册赠送积分活动 1528412
关于科研通互助平台的介绍 1487268