Covariate adjusted meta-analytic predictive (CA-MAP) prior for historical borrowing using patient-level data

协变量 计量经济学 结果(博弈论) 一致性(知识库) 相似性(几何) 人口 统计 计算机科学 数据挖掘 医学 数学 人工智能 环境卫生 图像(数学) 数理经济学
作者
Bradley Hupf,Yunlong Yang,Ryan Gryder,Veronica Bunn,Jianchang Lin
出处
期刊:Journal of Biopharmaceutical Statistics [Informa]
卷期号:: 1-9
标识
DOI:10.1080/10543406.2024.2330206
摘要

Utilization of historical data is increasingly common for gaining efficiency in the drug development and decision-making processes. The underlying issue of between-trial heterogeneity in clinical trials is a barrier in making these methods standard practice in the pharmaceutical industry. Common methods for historical borrowing discount the borrowed information based on the similarity between outcomes in the historical and current data. However, individual clinical trials and their outcomes are intrinsically heterogenous due to differences in study design, patient characteristics, and changes in standard of care. Additionally, differences in covariate distributions can produce inconsistencies in clinical outcome data between historical and current data when there may be a consistent covariate effect. In such scenario, borrowing historical data is still advantageous even though the population level outcome summaries are different. In this paper, we propose a covariate adjusted meta-analytic-predictive (CA-MAP) prior for historical control borrowing. A MAP prior is assigned to each covariate effect, allowing the amount of borrowing to be determined by the consistency of the covariate effects across the current and historical data. This approach integrates between-trial heterogeneity with covariate level heterogeneity to tune the amount of information borrowed. Our method is unique as it directly models the covariate effects instead of using the covariates to select a similar population to borrow from. In summary, our proposed patient-level extension of the MAP prior allows for the amount of historical control borrowing to depend on the similarity of covariate effects rather than similarity in clinical outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Thien应助EVIL采纳,获得10
1秒前
huangpeihao发布了新的文献求助10
2秒前
大熊发布了新的文献求助10
2秒前
2秒前
zhao发布了新的文献求助10
2秒前
精明一寡发布了新的文献求助10
3秒前
4秒前
蓝天应助wy采纳,获得10
4秒前
Genger发布了新的文献求助10
5秒前
杨枝甘露发布了新的文献求助20
5秒前
Ava应助奶油号角采纳,获得10
6秒前
7秒前
jjh发布了新的文献求助10
7秒前
七大洋的风完成签到,获得积分10
9秒前
千帆破浪发布了新的文献求助10
9秒前
10秒前
10秒前
宁祥森完成签到,获得积分20
11秒前
12秒前
NexusExplorer应助自信羿采纳,获得10
13秒前
可爱的函函应助年少的人采纳,获得10
13秒前
张永明发布了新的文献求助10
13秒前
lululala发布了新的文献求助10
15秒前
15秒前
16秒前
852应助秋来九月八采纳,获得10
17秒前
拾春完成签到,获得积分10
17秒前
push发布了新的文献求助10
18秒前
885791403完成签到,获得积分10
18秒前
lyx2010发布了新的文献求助10
18秒前
汉堡包应助呜呼呼采纳,获得10
19秒前
lululala完成签到,获得积分10
20秒前
科研通AI6应助张永明采纳,获得10
20秒前
20秒前
容止发布了新的文献求助10
20秒前
21秒前
22秒前
小白完成签到 ,获得积分10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563288
求助须知:如何正确求助?哪些是违规求助? 4648107
关于积分的说明 14683584
捐赠科研通 4590115
什么是DOI,文献DOI怎么找? 2518299
邀请新用户注册赠送积分活动 1491010
关于科研通互助平台的介绍 1462325