Covariate adjusted meta-analytic predictive (CA-MAP) prior for historical borrowing using patient-level data

协变量 计量经济学 结果(博弈论) 一致性(知识库) 相似性(几何) 人口 统计 计算机科学 数据挖掘 医学 数学 人工智能 环境卫生 图像(数学) 数理经济学
作者
Bradley Hupf,Yunlong Yang,Ryan Gryder,Veronica Bunn,Jianchang Lin
出处
期刊:Journal of Biopharmaceutical Statistics [Informa]
卷期号:: 1-9
标识
DOI:10.1080/10543406.2024.2330206
摘要

Utilization of historical data is increasingly common for gaining efficiency in the drug development and decision-making processes. The underlying issue of between-trial heterogeneity in clinical trials is a barrier in making these methods standard practice in the pharmaceutical industry. Common methods for historical borrowing discount the borrowed information based on the similarity between outcomes in the historical and current data. However, individual clinical trials and their outcomes are intrinsically heterogenous due to differences in study design, patient characteristics, and changes in standard of care. Additionally, differences in covariate distributions can produce inconsistencies in clinical outcome data between historical and current data when there may be a consistent covariate effect. In such scenario, borrowing historical data is still advantageous even though the population level outcome summaries are different. In this paper, we propose a covariate adjusted meta-analytic-predictive (CA-MAP) prior for historical control borrowing. A MAP prior is assigned to each covariate effect, allowing the amount of borrowing to be determined by the consistency of the covariate effects across the current and historical data. This approach integrates between-trial heterogeneity with covariate level heterogeneity to tune the amount of information borrowed. Our method is unique as it directly models the covariate effects instead of using the covariates to select a similar population to borrow from. In summary, our proposed patient-level extension of the MAP prior allows for the amount of historical control borrowing to depend on the similarity of covariate effects rather than similarity in clinical outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
77完成签到,获得积分10
刚刚
jingguofu完成签到 ,获得积分10
2秒前
小黄豆完成签到,获得积分10
3秒前
6秒前
吴晨曦完成签到,获得积分10
7秒前
山羊不吃兔完成签到 ,获得积分10
8秒前
123完成签到,获得积分10
8秒前
静翕完成签到 ,获得积分10
9秒前
komisan完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
坚定寒松完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
1111完成签到 ,获得积分10
20秒前
秋秋完成签到,获得积分10
21秒前
青青完成签到 ,获得积分10
21秒前
完美世界应助科研通管家采纳,获得10
22秒前
共享精神应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
22秒前
Jasper应助慕容飞凤采纳,获得10
22秒前
量子星尘发布了新的文献求助10
23秒前
顾城浪子完成签到,获得积分10
27秒前
有魅力胡萝卜完成签到,获得积分10
28秒前
七QI完成签到 ,获得积分10
29秒前
LIUJIE完成签到,获得积分10
30秒前
576-576完成签到 ,获得积分10
30秒前
smh完成签到 ,获得积分10
32秒前
李健应助有魅力胡萝卜采纳,获得10
32秒前
小武完成签到,获得积分10
32秒前
聂先生完成签到,获得积分10
36秒前
影像大侠完成签到,获得积分10
38秒前
xyzlancet完成签到,获得积分10
39秒前
MM完成签到 ,获得积分10
40秒前
唐唐完成签到,获得积分10
41秒前
WXyue完成签到 ,获得积分10
41秒前
耕牛热完成签到,获得积分10
42秒前
望凌烟完成签到,获得积分10
42秒前
量子星尘发布了新的文献求助10
43秒前
jiaojaioo完成签到,获得积分10
46秒前
量子星尘发布了新的文献求助10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869628
关于积分的说明 15108640
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536429
关于科研通互助平台的介绍 1494858