Toward Efficient and Interpretative Rolling Bearing Fault Diagnosis via Quadratic Neural Network With Bi-LSTM

计算机科学 人工神经网络 方位(导航) 二次方程 断层(地质) 人工智能 模式识别(心理学) 数学 几何学 地震学 地质学
作者
You Keshun,Wang Puzhou,Yingkui Gu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (13): 23002-23019 被引量:25
标识
DOI:10.1109/jiot.2024.3377731
摘要

With the widespread application of deep learning in Internet of Things (IoT), remarkable achievements have been made especially in rolling bearing fault diagnosis in rotating machinery. However, such complex models commonly have high demand for a large number of parameters and computational resources, and with insufficient interpretability, which restrict their extensive application in real-world industrial applications. To improve efficiency and interpretability, this study innovatively fuses a quadratic neural network (QNN) with a bidirectional long and short-term memory network (Bi-LSTM) to develop a novel hybrid model for quick and accurate diagnosis of rolling bearing faults. The results show that the model fully utilizes the multilayer feature extraction of QNN and the sensitivity of Bi-LSTM to the dynamic evolution of signals to significantly improve the accuracy and speed of fault diagnosis. By visualizing the convolutional kernel response map, the Qttention mapping of QNN, and the hidden states of Bi-LSTM, this study makes progress in interpretability and successfully demonstrates the model's attention to different features of the bearing signals, which provides users with a more reasonable understanding of the interpretation of the model results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背带裤打篮球应助lulu采纳,获得50
2秒前
天天发布了新的文献求助10
2秒前
3秒前
5秒前
5秒前
pemela发布了新的文献求助10
9秒前
1111111111应助端庄洋葱采纳,获得10
9秒前
阿信必发JACS应助长情砖头采纳,获得10
9秒前
喵小薇完成签到,获得积分10
11秒前
天天快乐应助要减肥白云采纳,获得10
11秒前
小笨猪完成签到,获得积分10
11秒前
热心渊思发布了新的文献求助10
11秒前
lili完成签到 ,获得积分10
12秒前
12秒前
小刚炮发布了新的文献求助10
14秒前
NexusExplorer应助狸小狐采纳,获得200
14秒前
5度转角应助WANG采纳,获得10
16秒前
Akim应助成就的白薇采纳,获得10
18秒前
WENYY发布了新的文献求助10
19秒前
19秒前
19秒前
sasa发布了新的文献求助30
19秒前
20秒前
20秒前
科目三应助zhou国兵采纳,获得10
20秒前
coco发布了新的文献求助30
23秒前
24秒前
25秒前
26秒前
打打应助《子非鱼》采纳,获得10
29秒前
29秒前
29秒前
29秒前
30秒前
tooz发布了新的文献求助10
31秒前
31秒前
zhangyulong发布了新的文献求助10
31秒前
2859356331发布了新的文献求助10
32秒前
hanlu关注了科研通微信公众号
33秒前
34秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
The Politics of Production: Factory Regimes under Capitalism and Socialism 500
The Three Stars Each: The Astrolabes and Related Texts 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3382948
求助须知:如何正确求助?哪些是违规求助? 2997332
关于积分的说明 8774314
捐赠科研通 2682807
什么是DOI,文献DOI怎么找? 1469338
科研通“疑难数据库(出版商)”最低求助积分说明 679368
邀请新用户注册赠送积分活动 671541