塔菲尔方程
纳米孔
过电位
无定形固体
析氧
材料科学
化学工程
异质结
分解水
催化作用
电催化剂
无机化学
纳米技术
化学
物理化学
电化学
结晶学
电极
光电子学
光催化
工程类
生物化学
作者
Yu Tang,Wen Ge,Lanxian Shen,Peizhi Yang,Shukang Deng,Jinsong Wang
出处
期刊:ACS Sustainable Chemistry & Engineering
[American Chemical Society]
日期:2024-03-21
卷期号:12 (13): 5300-5309
标识
DOI:10.1021/acssuschemeng.4c00318
摘要
Developing oxygen evolution reaction (OER) electrocatalysts with ampere-level activity and durability is an open challenge toward the final industrial application. Here, a nanoporous crystalline/amorphous nickel–iron oxyhydroxide heterostructure with abundant Fe2+ (c/a NiFe(II, III)OxHy) by partially substituting Ni2+ with Fe2+ is reported. Combination of X-ray absorption spectroscopy, in situ Raman, and density functional theory investigation suggested that the crystalline/amorphous structure with abundant cation defects and oxygen vacancy is conducive to lattice oxygen oxidation mechanism (LOM) and enhances OER kinetics. Fe2+ acts as an electron-sacrificing band to protect Fe3+ from overoxidation and promote the chemical stability. Meanwhile, the nanoporous structure can accelerate the detachment of the O2 and minimize structural oscillations to strengthen the mechanical stability. As a result, the c/a NiFe(II, III)OxHy catalyst not only exhibits superior electrocatalytic activity with an ultralow overpotential of 192 mV at 10 mA/cm2 and a Tafel slope of 41.8 mV/dec but also delivers industrial stability over 200 h at a current density of 1000 mA/cm2. This work provides a simple strategy and fundamental understanding for the development of industrial OER electrocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI